ارتباط صوت و ارتعاش
ارتباط صوت و ارتعاش

تجربیات یومیه نشان می‌دهد که احساس شنیدن وقتی برای ما پیدا می‌شود که شی که در مجاورت ما واقع شده است به ارتعاش در آید. مثلاً اگر پهلوی ما جامی فلزی قرار داشته باشد چنانچه با یک قطعه فلز به بدنه جام بزنیم صدایی از آن به گوش می‌رسد، و اگر با دقت به آن نگاه کنیم ملاحظه می‌گردد که در حین صدا دادن لبه جام غیر واضح می‌باشد و این علامت ارتعاش سریع است.





اگر در این هنگام پاندول سبک وزن ساده‌ای را به بدنه جام نزدیک کنیم ضربه‌های پشت سر هم بدنه جام را روی پاندول که دلیل ارتعاش آن است بخوبی مشاهده می‌کنیم. اما بعضی اوقات ارتعاش به اندازه‌ای سریع است که با چشم دیده نمی‌شود و باید با وسایل مختلف از قبیل وسیله فوق وجود آنرا در اجسام ظاهر ساخت.

علاوه بر آزمایش‌های مربوط به هوا جامدات و مایعات نیز برای صوت ناقل خوبی هستند. هر کس می‌داند که با گذاشتن گوش خود بزمین می‌تواند حرکت عابرین پیاده و چهارپایان را از مسافت نسبتاً زیادی بشنود. همچنین اگر گوش خود را به ریل راه آهن بچسبانیم حرکت لکوموتیو و قطار را ممکن است از چندین کیلومتر بشنویم. خاصیت انتقال صوت در جامدات و مایعات قویتر از خاصیت مزبور در گازها می‌باشد.

اغلب دیده‌ایم که با وجودیکه پهلوی ریل راه آهن ایستاده‌ایم، صدای حرکت قطاری را که دور از ما واقع شده است نمی‌شنویم، و اگر بخواهیم صدای حرکت قطار مزبور را بشنویم یا باید گوش خود را به ریل بچسبانیم و یا اینکه یک سر میله چوبی و یا فلزی را به ریل چسبانده و سر دیگر را روی گوش خود بگذاریم، طوریکه در هر دو حالت استخوان خارجی گوش به ارتعاش در آید. به همین دلیل است که دیاپازون را روی جعبه مخصوص قرار می‌دهند تا صدایش قوی شود.

صدا نتیجه ارتعاش یک جسم است و در محیط مادی (هوا یا آب) به صورت موج انتشار می‌یابد و ما در دستگاه شنوایی مان آن را با فعل و انفعالات فیزیولوژیک درک می‌کنیم.
بسامد: تعداد حرکت نوسانی را در مدت زمان معین بسامد می‌نامند.(هر حرکت کامل نوسانی تناوب نامیده می‌شود). زمان اندازه‌گیری نوسان‌ها ثانیه می‌باشد و تعدادشان با واحد هرتز مشخص می‌شود. ثانیه/تعداد نوسان Hz=
هرقدر بسامد صدا بیشتر باشد یعنی حرکت ارتعاشی تندتر باشد صدای حاصل زیرتر و هرقدر بسامد آن کمتر باشد بم تر خواهد بود. اما گوش انسان تنها قادر به شنیدن صداها در بازه بسامدی بین ۲۰ تا ۲۰۰۰۰هرتز می‌باشد.
برای تولید و انتشارات امواج آکوستیکی، ارتعاشهایی را که سبب تولید و انتقال موجهای آکوستیکی می‌شوند بر حسب حدود فرکانسشان به سه دسته تقسیم می‌شوند: ارتعاشهای صوتی که در ایجاد صدا موثرند و با گوش شنیده می‌شوند. حدود فرکانس ارتعاشهایی از این نوع که در ایجاد صدا موثرند و با گوش شنیده می‌شوند، بین ۲۰ الی ۱۵۰۰۰ سیکل بر ثانیه می‌باشد. ارتعاشهای فراصوتی از فرکانسهای ۱۵۰۰۰ سیکل بر ثانیه به بالا و ارتعاشهای فروصوتی، از فرکانسهای ۲۰ سیکل بر ثانیه به پایین.
طول موج: جسم مرتعش هر تناوب کامل را در مدت زمانی مشخص انجام می‌دهد. واحد طول موج متر بوده و هرچه این مقدار کوتاهتر باشد صدا زیرتر و در صورت بلند بودن صدا بم تر می‌باشد.
دامنه: حداکثر مسافتی که جسم مرتعش از نقطه تعادل خود در وسط به دو طرف (نقاط اوج) طی می‌کند. . دامنه بیانی از شدت صداست. هرچه دامنه صدا بلندتر صدا شدیدتر و در صورت کوتاه بودن صدا ضعیف تر است.
شدت صوت:احساس بلندی و کوتاهی صدا مربوط به انرژی حمل شده با امواج صوتی است و بر حسب واحد دسی بل می‌باشد که یک واحد مقایسه‌ای است و عبارت است از ده برابر log نسبت شدت صدای مورد نظر به شدت یک سطح مقایسه‌ای که بطور قراردادی صدایی است که دارای ۰۰۰۲/۰ میکرو بار فشار بوده و به عنوان آستانه شنوایی در انسان در نظر گرفته می‌شود.

فرکانس شنوایی انسان بین۲۰۰۰۰ – ۲۰ سیکل در ثانیه انجام می‌شود که دارای شدتی برابرا ۶۰ – ۳۰ دسی بل می‌باشد.

تفاوت بلندی و شدت صوت: شدت صوت یک کمیت فیزیکی است اما بلندی صوت یک خاصیت فیزیولوژیکی که علاوه بر شدت صوت به گوش انسان نیز بستگی دارد.
نوفه: نوفه یا سر و صدا واژه‌ای است که برای توضیح وضعیت صدا در زمان‌های به خصوص به کار می‌رود. صدا، تعریف نوفه بر اساس جنبه‌های فیزیکی صدا ممکن نیست، چرا که یک صدا می‌تواند در یک لحظه “خواسته” باشد، در صورتی که در شرایط دیگر یا برای همان افراد “ناخواسته” باشد و به عنوان نوفه تلقی شود و لذا به دلیل مطرح شدن عوامل ذهنی و فیزیولوژیکی و حالات درونی ارائه تعریف برای آن مشکل است. اما به طور کلی به صداهای ناخواسته یا آزاردهنده که به هر دلیلی بر فعالیت‌های روزانه ما اثر منفی بگذارد، نوفه گفته می‌شود. صداها زمانی ناخواسته گفته می‌شود که: – صحبت کردن و برقراری ارتباط میان افراد را تحت تأثیر قرار دهند. – در فرایندهای فکر کردن و تمرکز فکری اختلال ایجاد کنند. – از انجام مناسب فعالیت‌ها جلوگیری نمایند.
شیوش (طنین یا رنگ صوتی): صداهای موسیقیایی و سازها دارای شیوش خاص خود هستند و علت تشخیص صدای سازها از یکدیگر در حال نواختن یک نت مشترک همین امر است. صدای بی شیوش منحنی سینوسی دارد و منظم است.
هارمونیک (موج فرعی): صدای شما ترکیبی از چند موج صوتی است. دانشمندان هر موج صوتی را “هارمونیک” می‌نامند. مجموع این هارمونیک‌ها، صدای شما را به شکل یک موج پیچیدهٔ صوتی تشکیل می‌دهند. تفاوت صدای افراد ناشی از تفاوت در همین هارمونیک‌ها می‌باشد.
نواک: بیانی از زیر یا بم بودن یک صداست. بعضی صداهای غیر موسیقیایی شیوش دارند اما تشخیص نواک در آنها مشکل می‌باشد. مانند صدای باران
پژواک: وقتی داخل یک سالن بزرگ و یا یک معبد با صدای بلند سخن می‌گوییم، انعکاس صدای خود را پی در پی می‌شنویم. به این پدیده اکو یا پژواک می‌گویند .. پژواک زمانی تولید می‌گردد که از موانع انعکاس یابند. اما همه اشیا صوت را منعکس نمی‌کنند. برخی از اشیا مثل چوب، جوت (کنف هندی)، مقوای نازک وموارد دیگر صوت را جذب می‌کنند. جهت شنیدن پژواک لازم است که مانع منعکس کننده صوت در فاصله حداقل ۱۷متری از منبع صوتی قرار گیرد. زیرا اثر صوت به مدت یک دهم ثانیه در گوش ما پدیدار می‌ماند. اگر یک سیگنال صوتی به گوش ما برسد، وبه دنبال آن در یک دهم ثانیه سیگنال صوتی دیگری نیز به گوشمان واردشود، سیستم شنوایی گوش، آن را تشخیص نخواهد داد. سرعت صوت ۳۴۰ متر در ثانیه می‌باشد.
پس آوا: مدت دوام آوا پس از خاموش شدن سرچشمه آوا را پس آوا گویندکه کمیتی قابل محاسبه است. هرپه پس آوا در یک فضا بیشتر باشد وضوح کمتر است.(طنین)







آکوستیک در یک فضا

تصور کنید در شکل مقابل در نقطه سبز رنگ یک منبع صوتی وجود دارد که می‌تواند بلندگوهای یک دستگاه پخش، نوازنده یک ساز، خواننده و یا یک ارکستر باشد. برای سادگی بررسی فرض می‌کنیم نسبت منبع صوتی به فضای اتاق آنقدر کم است که می‌توان آنرا یک منبع نقطه‌ای صوت در نظر گرفت.
انرژی انعکاسهای صوت با توجه به مسیری که طی می‌کنند بتدریج کاسته می‌شود.

امواج صوتی هنگام برخورد به موانع با زاویه تابش نسبت به خط مماس بر نقطه برخورد بازتابیده خواهند شد. بنابراین به دلیل اینکه این اتاق دارای چهار دیوار است، چهار بازتابش داریم که همان صوت تولید شده را پس از طی مسافت طولانی تری به گوش شنونده می رسانند. به عبارت دیگر هرچه از منبع بیشتر دور شویم انرژی صوتی کمتر خواهد شد. بنابراین مشخص است که بازتابشهایی از منبع اصلی صوت که مسافت بیشتری را برای رسیدن به گوش شنونده طی می‌کنند؛ اولآ دیرتر به گوش شنونده می‌رسند و ثانیآ حامل انرژی کمتری هستند.






نکات مهم

صوت در دو نوع مستقیم و غیر مستقیم دریافت می‌شود. صداهای مستقیم در یک فرم کروی انتقال یافته و از منبع به طور مستقیم به شنونده می‌رسند و این فرم کروی در حرکت باعث می‌شود در تمام جهت‌ها در یک زمان مشخص حرکت داشته باشد. در حالت غیر مستقیم صدا در اثر برخورد با یک سطح بازگشت یافته و سپس به دریافت کننده می‌رسد. صدا هم‌زمان که از مسیرهای مختلف خارج می‌گردد دریافت می‌شود.

کنترل آکوستیکی به معنی کنترل انتشار مستقیم و غیر مستقیم (مسیرهای ثانویه) توسط صوت است. برای فراهم نمودن یک صدای خوب در محیط باید به سه نکته توجه ویژه داشت اول کنترل و رسیدن صدای خوب به هر شخص به صورت مستقیم است که این موضوع خود بیانی از مباحث انتشار و بازگشت و کم کردن مدت زمان طنین جهت جلوگیری از هم پوشانی شدن صداها توسط یکدیگر است. دوم جلوگیری از ایجاد نویز یا نوفه بوده که از طریق انتخاب سایت مناسب دور از آلودگی صوتی، دیوارهای دوجداره، مصالح جاذب و دورسازی تاسیسات از چنین محیط‌هایی و همچنین قرار دادن فضاهای واسطه‌ای چون کریدور و انبار میان محیط خارج و فضاهای شنوایی است. و سوم استفاده از سیستم‌های صوتی ایده‌آل می‌باشد. که در واقع تقویت صدا توسط بکار گیری میکروفونها و بلندگوها و آمپلی فایرها با تعبیه یک اتاق کنترل است. که بسته به نوع بکارگیری متفاوت بوده و از سیستم‌های مختلفی می‌توان بهره برد.





آزمون انتشار امواج صوتی
آزمون انتشار امواج صوتی (به انگلیسی: Acoustic Emission) یکی از روش‌های آزمون‌های غیر مخرب است. وقتی که ماده‌ای جامد تحت تنش می‌باشد، عیوب موجود در آن باعث ایجاد امواج صوتی با فرکانس بالا می‌گردند. این امواج در ماده منتشر شده و می‌توان توسط حسگرهای خاصی آنها را دریافت کرد و با تجزیه و تحلیل این امواج می‌توان نوع عیب، مکان و شدت آن را تعیین نمود.





فروصوت

فروصوت (به انگلیسی: Infrasound) به امواج صوتی گفته می‌شود که دارای بسامدی کمتر از حد پایین محدودهٔ بسامد قابل شنیدن انسان هستند.

بازه فرکانسی شنوایی انسان حدوداً بین ۲۰ هرتز تا ۲۰ کیلوهرتز است، بنابراین صداهای با فرکانس کمتر از ۲۰ هرتز که انسان آنها را نمی‌شنود، فروصوت نامیده می‌شود.





دیوار صوتی
در هوانوردی، دیوار صوتی(به انگلیسی: sound barrier) نقطه‌ای است که متحرک اگر بخواهد به مافوق صوت برسد باید از آن عبور کند. اولین بار در دهه ۱۹۵۰ دیوارهای صوتی شکسته شدند. شکسته‌شدن دیوار صوتی همراه با صدایی بلند است.






تاریخچه

برخی از شلاق‌های معمول، مانند شلاق چرمی قادر به حرکت سریع تر از صداهستند. نوک شلاق دیوار صوتی را می‌شکند و باعث ایجاد صدای شکست تیزی می‌شود. به معنی دیگر شکست صوت. اسلحه‌های گرم پس از قرن نوزدهم به طور کلی تا به حال بالای سرعت صوت کار کره‌اند.






عوامل موثر

سرعت صوت بسته به چگالی دما و رطوبت (در مورد هوا) متفاوت است. به طور مثال سرعت صوت در هوای ۲۰ درجه سانتی گراد ۱۲۲۴ کیلومتر بر ساعت، در آب معمولی ۵۳۷۵ کیلومتر بر ساعت و در الماس ۴۳۲۰۰ کیلومتر بر ساعت می‌باشد. واحد سرعت صوت ماخ نام دارد که معادل ۱۲۲۴ کیلومتر بر ساعت است و هر جسم که بخواهد دیوار صوتی را بشکند باید از این سرعت فراتر رود و استحکام کافی برای متلاشی نشدن را داشته باشد.

اغلب جنگنده‌های امروزی و چند بمب افکن (مانند B-1) توانایی این کار را دارند.

تنها یک وسیله سرنشین دار روی زمین از این سرعت فراتر رفته که تراست اس‌اس‌سی نام دارد و محصول مشترک ایالات متحده امریکا و انگلستان است که با رانندگی اندی گرین (andy green) نام خود را برای همیشه ماندگار کرد.






عامل ایجاد دیوار صوتی

امواج ضربه‌ای یا Shockwaves در حقیقت همان عامل اصلی ایجاد دیوار صوتی هستند. امواج ضربه‌ای، تغییری ناگهانی در فشار و دمای یک لایه از هواست که می‌تواند به لایه‌های دیگر منتقل شده و به صورت یک موج فضا را بپیماید. برای درک بهتر مطلب، وقتی که سنگی در آب انداخته می‌شود، موجهایی در آب بوجود می‌آیند که به سمت خارج در حال حرکتند. این امواج، نتیجه افزایش سرعت یا اعمال نیرو به لایه‌ای از ملکولهای آب است که قادر به انتقال به لایه‌های دیگر نیز می‌باشد، و امواج ضربه‌ای نیز، همان امواج درون آب هستند، با این تفاوت که آنها در سیالی دیگر به جای آب به نام هوا، تشکیل می‌شوند.

در سرعتهای نزدیک سرعت صوت، فرضیه غیر قابل تراکم بودن هوا رد شده و ضریب تراکم هوا به ۱۶٪ در می‌رسد، که مقداری غیر قابل چشم پوشی است. در این سرعتها هوای جلوی بال یا لبه حمله به شدت متراکم گشته و دما و فشار آن به طرز قابل توجهی افزایش می‌یابد، همین مسأله، یکی از عوامل ایجاد امواج ضربه‌ای است. هواپیما با حرکت خود در هوا، نظم فشار هوای محیط را برهم می‌زند و همانند قایقی که در آب در حال حرکت است، امواجی از آن ساطع شده و به دلیل اینکه این امواج با سرعت صوت حرکت می‌کنند و هواپیما زیر سرعت صوت در حال سیر است، از آن دور می‌شوند.

اما کم‌کم، با نزدیک شدن به سرعتهای ترانسونیک و حدود سرعت صوت، این امواج فرصت دور شدن از هواپیما را نداشته و در جلوی بال متراکم می‌شوند. در مناطقی از بدنه هواپیما که سطوح ناموزونی نسبت به جهت حرکت هواپیما دارد، سرعت گذر هوا افزایش یافته و بر اساس اصل برنولی، با افزایش سرعت سیال، فشار آن کاهش می‌یابد. در چنین سرعتهایی، هوای اطراف این سطوح به سرعت صوت می‌رسد، گر چه هواپیما هنوز به سرعت صوت نرسیده باشد. در نتیجه رسیدن بعضی سطوح به سرعت صوت، امواج ضربه‌ای تولید شده و درگ یا پسای فراوانی را قبل از رسیدن به سرعت صوت تولید می‌کنند، که همین مسأله گذر از دیوار صوتی را مشکل می‌نماید.






صدای انفجار

امواج حاصله از حرکت هواپیما یا صدای تولید شده در اثر حرکت، هر بار در سرعتهای زیر سرعت صوت از هواپیما دور شده و به گوش شنونده می‌رسد. اما با رسیدن هواپیما به سرعت صوت، این صداها دیگر فرصت دور شدن از هواپیما را نداشته و کلاً در جلوی هواپیما جمع می‌شوند. با گذر از سرعت صوت، صدایی چند ده برابر شده از حرکت هواپیما باهم به گوش شنونده می‌رسد که مانند یک انفجار شدید یا صدای رعد و برقی بسیار قدرتمند می‌باشد. شاید در تصاویر هواپیماهای در حال گذر از دیوار صوتی، هاله‌ای سفید رنگ را در اطراف هواپیما مشاهده کرده باشید. در هنگام گذر از دیوار صوتی، اگر هواپیما نزدیک به زمین و در محیطی مرطوب با درصد بخار آب زیاد باشد، بخار آب هوا در اثر امواج ضربه‌ای فشرده شده و ابر سفیدی را برای چند ثانیه پدید می‌آورند که همان هاله سفید رنگ قابل روئیت در تصاویر است. اما از امواج ضربه‌ای در موتورهای جت نیز استفاده می‌شود. بدین گونه که، هوا ورودی در موتورهای جت، اگر هواپیما با سرعتهای بالای صوت پرواز نماید، باید زیر سرعت صوت باشد تا قابلیت احتراق را در موتور داشته باشد.






شکستن دیوار صوتی به عنوان یک پرتابهٔ انسان

در ژانویه ۲۰۱۰، فلیکس باومگارتنر با کار در یک تیم از دانشمندان حمایت شده توسط "نوشابه‌های رد بول" برای کسب بالاترین رکورد در سقوط آزاد از آسمان تلاش کردند. این پروژه برای دیدن شکست دیوار صوتی توسط باومگارتنر با پرش از ارتفاع ۳۶،۵۸۰ متری از یک بالون هلیوم بعنوان اولین چتر باز تلاش می‌کند. پرش در تاریخ نهم اکتبر ۲۰۱۲ برنامه ریزی شده بود، اما به دلیل نامساعد بودن هوا لغو شد و پس از آن کپسول در ۱۴ اکتبر به فضا پرتاب شد.





سرعت فراصوت
سرعت فراصوت به سرعتی گفته می‌شود که از سرعت صوت (۳۴۳ متر بر ثانیه) بیشتر باشد. واحد سرعت فراصوت «ماخ» است و به تعداد ضریب سرعت می‌گویند مثلاً صدا یک ماخ سرعت دارد.






خصوصیات صوت و دیوار صوتی

خصوصیات صوت و دیوار صوتی چیست و چرا گذر از آن نیازمند قدرت و کشش و توانایی زیادی است. صوت، در شرایط عادی (دما، فشار و … معمولی) در سطح دریا دارای سرعتی معادل ۳۴۰ متر بر ثانیه‌است که این سرعت، با افزایش ارتفاع و کاهش فشار و تراکم هوا، کاهش یافته و در ارتفاعات بالاتر، صوت فواصل را با سرعت کمتری می‌پیماید. این مسئله بدین صورت است که صوت از طریق ضربات ملکولهای هوا به یکدیگر و انتقال انرژی آنها فضا را طی می‌کند و هر چه تعداد مولکولها در یک حجم معین بیشتر باشند، انتقال انرژی زودتر صورت پذیرفته و صوت با سرعت بیشتری انتقال می‌یابد؛ چنانکه سرعت صوت در مایعات بیشتر از هوا و در جامدات بسیار بیشتر از مایعات و هوا و معادل ۶۰۰۰ کیلومتر بر ساعت است.

پس در نتیجه افزایش ارتفاع، تعداد ملکولها در یک حجم معین کاهش یافته و صوت با سرعت کمتری فضا را می‌پیماید. دیوار صوتی، شیئی فیزیکی و قابل روئیت نیست؛ بلکه به دلیل اینکه گذشتن از سرعت صوت نیازمند توان بسیار بالای موتور و آیرودینامیک بسیار خوب می‌باشد، این حد را یک مانع برای رسیدن به سرعتهای بالاتر دانسته و از آن به نام دیوار صوتی یاد می‌کنند. عدد ماخ، در حقیقت همان نسبت سرعت شیء پرنده یا همان هواپیما به سرعت صوت محیط است که به احترام دانشمندی اتریشی که برای اولین بار چنین مقیاسی را در نظر گرفت، آن را «ماخ» نام نهادند. پس عدد ماخ، کمیتی متغیر است و بسته به خصوصیات هوا مانند دما و فشار، تغییر کرده و کاهش یا افزایش می‌یابد.






عامل ایجاد دیوار صوتی

امواج شوک (Shockwaves) در حقیقت همان عامل اصلی ایجاد دیوار صوتی هستند. امواج ضربه‌ای، تغییری ناگهانی در فشار و دمای یک لایه از هواست که می‌تواند به لایه‌های دیگر منتقل شده و به صورت یک موج فضا را بپیماید. برای درک بهتر مطلب، وقتی که سنگی در آب انداخته می‌شود، موجهایی در آب بوجود می‌آیند که به سمت خارج در حال حرکتند. این امواج، نتیجه افزایش سرعت یا اعمال نیرو به لایه‌ای از ملکولهای آب است که قادر به انتقال به لایه‌های دیگر نیز می‌باشد، و امواج ضربه‌ای نیز، همان امواج درون آب هستند، با این تفاوت که آنها در سیالی دیگر به جای آب به نام هوا، تشکیل می‌شوند.






عدد ماخ بحرانی

به سرعتی که در آن حداقل یکی از سطوح هواپیما به سرعت صوت رسیده باشد، گر چه این پدیده در مورد خود هواپیما صادق نباشد، عدد ماخ بحرانی (Critical Mach Number) می‌گویند. عدد ماخ بحرانی را می‌توان به سرعتی که نمودار پسا در مقابل سرعت سیر صعودی می‌گیرد، نیز تعریف نمود. در این سرعت، فرامین هواپیما کم‌کم شروع به درست جواب ندادن کرده و حالتی شبیه به کوبیدن بر روی بال توسط امواج ضربه‌ای بوجود می‌آید که با گذر از دیوار صوتی، فرامین هواپیما به حالت طبیعی خود باز می‌گردند.






اثرات شکست دیوار صوتی

امواج ضربه‌ای توسط هواپیما در سرعت صوت، بسیار قدرتمند می‌باشند، چنانکه در صورت پرواز هواپیما نزدیک به زمین و گذر آن از دیوار صوتی، امواج ضربه‌ای با منتهای قدرت به اجسام زمینی مانند شیشه‌های منازل و ساختمانها برخورد نموده و باعث شکستن آنها می‌شود، یا حتی اگر شخصی در معرض امواج ضربه‌ای بطور مستقیم قرار گیرد، احتمال از دست دادن شنوایی و پاره شدن پرده گوش بسیار است.

از امواج ضربه‌ای، در بمبها و تسلیحات دیگر نیز استفاده می‌شود. بمبها با یک افزایش دما و فشار ناگهانی در لایه‌هایی از هوا، امواج ضربه‌ای بوجود آورده که از طریق هوا انتقال یافته و باعث شکستن شیشه‌ها و تخریب دیوارها نیز می‌شود. اگر شخصی در فاصله‌ای نسبتاً نزدیک در فضایی تهی از هوا و خلاء، حتی نزدیک یک بمب ده تنی ایستاده باشد، بر فرض منفجر کردن بمب، آسیبی به وی نخواهد رسید، چون هوایی برای انتقال امواج ضربه‌ای وجود ندارد.

به دلیل تولید امواج ضربه‌ای در سرعتهای حدود سرعت صوت، خلبانان سعی می‌کنند فقط مدت کوتاهی در چنین سرعتهایی ترانسونیک پرواز کرده و به زودی از دیوار صوتی گذر کنند، چون پرواز در این سرعتها نیروی بسیار زیاد موتور در نیتجه افزایش فوق العاده میزان مصرف سوخت را در پی دارد.






نویز
نویز (به انگلیسی: Noise) در الکترونیک به سیگنال‌های تصادفی و غیر مطلوب می‌گویند که با سیگنال اصلی جمع شده و آن را از شکل اصلی خارج می‌کند. نویز بسته به منبع خود دارای انواع مختلف است. از آن جمله می‌توان به نویز حرارتی اشاره کرد.





خودرو

خودرو هم‌چنین اتومبیل یا ماشین و به زبان فارسی دری «موتِر» به وسیله نقلیه چرخداری گفته می‌شود که موتور خود را حمل می‌کند.

خودرو به وسایلی گفته می‌شود که بدون ارتباط با وسیله دیگر و به کمک نیروی ماشینی خود، قادر به حرکت باشد.






دید کلی

اصولاً برای تمام وسایلی که دارای منبع قدرت باشند و به خودی خود بتوانند حرکت کنند، می‌توان واژهٔ خودرو را بکار برد. لیکن کاربرد این واژه در زبان ما دارای محدوده مشخصی است که معمولاً به وسایل متحرکی گفته می‌شود که همگی دارای حرکت بوده و با زمین در تماس هستند.
page1 - page2 - page3 - page4 - page5 - page7 - page8 - | 2:32 am
روش‌های جهت‌یابی در روز

جهت‌یابی به کمک موقعیت خورشید در آسمان

۱- خورشید صبح تقریباً از سمت شرق طلوع می‌کند، و شب تقریباً در سمت غرب غروب می‌کند.

این مطلب فقط در اول بهار و پاییز صحیح است؛ یعنی در اولین روز بهار و پاییز خورشید دقیقاً از شرق طلوع و در غرب غروب می‌کند، ولی در زمان‌های دیگر، محل طلوع و غروب خورشید نسبت به مشرق و مغرب مقداری انحراف دارد.






در تابستان طلوع و غروب خورشید شمالی‌تر از شرق و غرب است، و در زمستان جنوبی‌تر از شرق و غرب می‌باشد. در اول تابستان و زمستان، محل طلوع و غروب خورشید حداقل حدود ۲۳٫۵ درجه با محل دقیق شرق و غرب فاصله دارد، که این خطا به هیچ وجه قابل چشم پوشی نیست. در واقع از آن‌جا که موقعیت دقیق خورشید با توجه به فصل و عرض جغرافیایی متغیر است، این روش نسبتاً غیردقیق است.

۲- در نیمکرهٔ شمالی زمین، در زمان ظهر شرعی خورشید همیشه دقیقاً در جهت جنوب است و سایهٔ اجسام رو به شمال می‌افتد.

ظهر شرعی یا ظهر نجومی، دقیقاً هنگامی است که خورشید به بالاترین نقطه خود در آسمان می‌رسد. در این زمان، سایهٔ شاخص به حداقل خود در روز می‌رسد، و پس از آن دوباره افزایش می‌یابد؛ همان زمان اذان ظهر.

برای دانستن زمان ظهر شرعی می‌توان به روزنامه‌ها مراجعه کرد یا منتظر صدای اذان ظهر شد. ظهر شرعی حدوداً نیمه بین طلوع آفتاب و غروب آفتاب است.

۳- حرکت خورشید از شرق به غرب است؛ و این هم می‌تواند روشی برای یافتن جهت‌های جغرافیایی باشد.




جهت‌یابی با سایهٔ چوب(شاخص)

شاخص، چوب یا میله‌ای صاف و راست است (مثلاً شاخه نسبتاً صافی از یک درخت به طول مثلاً یک متر) که به طور عمودی در زمینی مسطح و هموار و افقی(تراز و میزان) فرو شده‌است.

روش اول: نوک(انتهای) سایهٔ شاخص روی زمین را [مثلاً با یک سنگ] علامت‌گذاری می‌کنیم. مدتی (مثلاً ده-بیست دقیقه بعد، یا بیشتر) صبر می‌کنیم تا نوک سایه چند سانتیمتر جابه‌جا شود. حال محل جدید سایهٔ شاخص (که تغییر مکان داده‌است) را علامت‌گذاری می‌نماییم. حال اگر این دو نقطه را با خطی به هم وصل کنیم، جهت شرق-غرب را مشخص می‌کند. نقطهٔ علامت‌گذاری اول سمت غرب، و نقطهٔ دوم سمت شرق را نشان می‌دهد. یعنی اگر طوری بایستیم که پای چپ‌مان را روی نقطهٔ اول و پای راستمان را روی نقطهٔ دوم بگذاریم، روبروی‌مان شمال را نشان می‌دهد، و رو به خورشید (پشت سرمان) جنوب است.

از آن‌جا که جهت ظاهری حرکت خورشید در آسمان از شرق به غرب است، جهت حرکت سایهٔ خورشید بر روی زمین از غرب به شرق خواهد بود. یعنی در نیم‌کره شمالی سایه‌ها ساعتگرد می‌چرخند.
هر چه از استوا دورتر بشویم، از دقت پاسخ در این روش کاسته می‌شود. یعنی در مناطق قطبی (عرض جغرافیایی بالاتر از ۶۰ درجه) استفاده از آن توصیه نمی‌شود.
در شب‌های مهتابی هم از این روش می‌توان استفاده کرد: به جای خورشید از ماه استفاده کنید.

روش دوم(دقیق‌تر): محل سایهٔ شاخص را زمانی پیش از ظهر علامت گذاری می‌کنیم. دایره یا کمانی به مرکز محل شاخص و به شعاع محل علامت‌گذاری شده می‌کشیم. سایه به تدریج که به سمت شرق می‌رود کوتاه‌تر می‌شود، در ظهر به کوتاه‌ترین اندازه‌اش می‌رسد، و بعداز ظهر به تدریج بلندتر می‌گردد. هر گاه بعد از ظهر سایهٔ شاخص از روی کمان گذشت (یعنی سایهٔ شاخص هم‌اندازهٔ پیش از ظهرش شد) آن‌جا را به عنوان نقطهٔ دوم علامت‌گذاری می‌کنیم. مانند روش پیشین، این نقطه سمت شرق و نقطهٔ پیشین سمت غرب را نشان می‌دهد.

در واقع هر دو نقطه سایهٔ هم‌فاصله از شاخص، امتداد شرق-غرب را مشخص می‌کنند.
با این‌که روش پیشین نسبتاً دقیق است، این روش دقیق‌تر است؛ البته وقت بیشتری برای آن لازم است.
برای کشیدن کمان مثلاً طنابی(مانند بند کفش، نخ دندان) را انتخاب کنید. یک طرف طناب را به شاخص ببندید، و طرف دیگرش را به یک جسم تیز؛ به شکلی که وقتی طناب را می‌کشید دقیقاً به محل علامت‌گذاری شده برسد. نیم‌دایره‌ای روی زمین با جسم تیز رسم کنید.
وقتی سایهٔ شاخص به حداقل اندازهٔ خود می‌رسد(در ظهر شرعی)، این سایه سمت جنوب را نشان می‌دهد (بالای ۲۳٫۵ درجه).



جهت‌یابی با ساعت عقربه‌دار
ساعت مچی معمولی (آنالوگ، عقربه‌ای) را به حالت افقی طوری در کف دست نگه می‌داریم که عقربهٔ ساعت‌شمار به سمت خورشید اشاره کند. در این حالت، نیمسازِ زاویه‌ای که عقربهٔ ساعت‌شمار با عدد ۱۲ ساعت می‌سازد (زاویهٔ کوچک‌تر، نه بزرگ‌تر)، جهت جنوب را نشان می‌دهد. یعنی مثلاً اگر چوب‌کبریتی را [به طور افقی] در نیمهٔ راه میان عقربهٔ ساعت‌شمار و عدد ۱۲ ساعت قرار دهید، به طور شمالی-جنوبی قرار گرفته‌است.
نکات

این که گفته شد عقربهٔ کوچک ساعت به سمت خورشید اشاره کند، یعنی این‌که اگر شاخصی [مثلاً چوب‌کبریت] ای که در مرکز ساعت قرار دهیم، سایه‌اش موازی با عقربهٔ ساعت‌شمار و در جهت مقابل آن باشد. یا این‌که سایهٔ عقربهٔ ساعت‌شمار درست در زیر خود عقربه قرار گیرد. یا مثلاً اگر چوبی ده-پانزده سانتیمتری را در زمین به‌طور عمودی قرار دهیم، ساعت روی زمین به شکلی قرار گرفته باشد که عقربهٔ ساعت‌شمارش موازی با سایهٔ چوب باشد.
دلیل این‌که زاویه بین عقربهٔ ساعت‌شمار و ۱۲ را نصف می‌کنیم این است که: وقتی خوشید یک بار دور زمین می‌چرخد، ساعت ما دو دور می‌چرخد(دو تا ۱۲ ساعت). یعنی گرچه روز ۲۴ ساعت است (و یک دور کامل را در ۲۴ ساعت طی می‌کند)، ساعت‌های ما یک دور کامل را در ۱۲ ساعت طی می‌نماید. اگر ساعت ۲۴ ساعته‌ای می‌داشتید، که دور آن به ۲۴ قسمت مساوی تقسیم شده بود، هر گاه عقربهٔ ساعت‌شمار را رو به خورشید می‌گرفتید عدد ۱۲ ساعت همیشه جهت جنوب را نشان می‌داد.
این روش وقتی سمت صحیح را نشان می‌دهد، که ساعت مورد نظر درست تنظیم شده باشد. یعنی اگر در بهار و تابستان ساعت‌ها را نسبت به ساعت استاندارد یک‌ساعت جلو می‌برند، ما باید آن را تصحیح کنیم(ابتدا ساعت‌مان را یک ساعت عقب ببریم سپس روش را اِعمال کنیم؛ یا نیمساز عقربهٔ ساعت‌شمار را [به جای ۱۲] با ۱ حساب کنید). همچنین در همهٔ سطح یک کشور معمولاً ساعت یکسانی وجود دارد، که مثلاً در ایران حدود یک ساعت متغیر است (ایران تقریباً بین دو نصف‌النهار قرار دارد؛ لذا ظهر شرعی در شرق و غرب ایران حدوداً یک ساعت فاصله دارد.) ساعت صحیح هر مکان همان ساعتی است که هنگام ظهر شرعی در آن در طول سال، اطراف ساعت ۱۲ ظهر است. در واقع برای تعیین دقیق جهت‌های جغرافیایی ساعت باید طوری تنظیم باشد که هنگام ظهر شرعی ساعت ۱۲ را نشان دهد.
روش ساعت مچی تا ۲۴ درجه امکان خطا دارد. برای دقت بیشتر باید از آن در عرض جغرافیایی بین ۴۰ و ۶۰ درجه [شمالی یا جنوبی] استفاده شود؛ هر چند در عرض جغرافیایی ۲۳٫۵ تا ۶۶٫۵ درجه [شمالی یا جنوبی] نتیجه‌اش قابل قبول است.(البته در نیم‌کردهٔ جنوبی جهت شمال و جنوب برعکس است.) در واقع هر چه به استوا نزدیک‌تر شویم، از دقت این روش کاسته می‌شود. ضمناً هر چه زمان به کار بردن این روش به ظهر شرعی نزدیک‌تر باشد، نتیجهٔ آن دقیق‌تر خواهد بود.
اگر مطمئن نیستید کدام طرف شمال است و کدام طرف جنوب، به یاد بیاورید که خورشید از شرق بر می‌خیزد، در غرب می‌نشیند، و در ظهر سمت جنوب است.
توجه کنید که اگر این روش را در هنگام ظهر شرعی (یعنی ساعت ۱۲) اجرا کنیم، جهت عقربه ساعت‌شمار خود به سوی جنوب است. یعنی مانند همان روش «جهت‌یابی با سمت خورشید»، که گفتیم خورشید در ظهر شرعی به سمت جنوب است.
اگر از ساعت دیجیتال استفاده می‌کنید، می‌توانید ساعت عقربه‌داری را روی یک کاغذ یا روی زمین بکشید (دور دایره‌ای از ۱ تا ۱۲ بنویسید، و عقربهٔ ساعت‌شمار را هم بکشید)، و سپس از روش بالا استفاده کنید.
حتی وقتی هوا آفتابی نیست و خورشید به راحتی دیده نمی‌شود هم گاه سایهٔ خوشید را می‌توان دید. اگر یک چوب‌کبریت را عمود نگه دارید، سایهٔ آن برعکس جهت خورشید می‌افتد.




روش‌های جهت‌یابی در شب
جهت‌یابی با ستارهٔ قطبی

از آن‌جا که ستاره‌ها به محور ستاره قطبی در آسمان می‌چرخند، در نیم‌کرهٔ شمالی زمین ستارهٔ قطبی با تقریب بسیار خوبی (حدود ۰٫۷ درجه خطا) جهت شمال جغرافیایی (و نه شمال مغناطیسی) را نشان می‌دهد؛ یعنی اگر رو به آن بایستیم، رو به شمال خواهیم بود.

برای یافتن ستارهٔ قطبی روش‌های مختلفی وجود دارد:

به وسیلهٔ مجموعه ستارگان «دبّ اکبر»: صورت فلکی دبّ اکبر شامل هفت ستاره‌است که به شکل ملاقه قرار گرفته‌اند: چهار ستاره آن تشکیل یک ذوزنقه را می‌دهند، و سه ستارهٔ دیگر مانند یک دنباله در ادامه ذوزنقه قرار گرفته‌اند. هر گاه دو ستاره‌ای که لبهٔ بیرونی ملاقه را تشکیل می‌دهند (دو ستارهٔ قاعده کوچک ذوزنقه؛ لبهٔ پیالهٔ ملاقه؛ محلی که آب از آن‌جا می‌ریزد) را [با خطی فرضی] به هم وصل کنیم، و پنج برابر فاصله میان دو ستاره، به سمت جلو ادامه دهیم، به ستاره قطبی می‌رسیم.
به وسیلهٔ مجموعه ستاره‌های «ذات‌الکرسی»: صورت فلکی ذات‌الکرسی شامل پنج ستاره‌است که به شکل W یا M قرار گرفته‌اند. هرگاه (مطابق شکل) ستارهٔ وسط W (رأس زاویهٔ وسطی) را حدود پنج برابرِِ «فاصلهٔ آن نسبت به ستاره‌های اطراف» به سوی جلو ادامه دهیم، به ستارهٔ قطبی می‌رسیم.


نکات
صورت‌های فلکی ذات‌الکرسی و دبّ اکبر نسبت به ستارهٔ قطبی تقریباً روبه‌روی یکدیگر، و دور ستاره قطبی خلاف جهت عقربه‌های ساعت می‌چرخند. اگر یکی از آن‌ها پشت کوه پنهان بود، با دیگری می‌توان ستارهٔ قطبی را یافت. فاصلهٔ هر کدام از این دو صورت فلکی تا ستارهٔ قطبی تقریباً برابر است.
اگر برای یافتن ستاره‌ها در آسمان از نقشه ستاره‌یاب (افلاک‌نما) استفاده می‌کنید، به‌خاطر داشته باشید که ستاره‌یاب‌ها موقعیت ستاره‌ها را در زمان، تاریخ و موقعیت جغرافیایی (طول و عرض جغرافیایی) خاصی نشان می‌دهند.
هر چه از استوا به سوی قطب شمال برویم، ستارهٔ قطبی در آسمان بالاتر (در ارتفاع بیشتر) دیده می‌شود. یعنی ستارهٔ قطبی در استوا (عرض جغرافیایی صفر درجه) تقریباً در افق دیده می‌شود، و در قطب شمال(عرض جغرافیایی ۹۰ درجه) تقریباً بالای سر (سرسو، سمت‌الرّأس، رأس‌القدم) دیده می‌شود. بالاتر از عرض جغرافیایی ۷۰ درجه شمالی عملاً نمی‌توان با ستارهٔ قطبی شمال را پیدا کرد.





جهت‌یابی با هلال ماه

اگر به دلیل وجود ابر یا درختان نمی‌توانید ستاره‌ها را ببینید، می‌توانید از ماه برای جهت‌یابی استفاده کنید.

ماه به شکل هلال باریکی تولد می‌یابد، و در نیمه‌های ماه قمری به قرص کامل تبدیل می‌شود، و سپس در جهت مقابل هلالی می‌شود. در نیمهٔ اول ماه‌های قمری قسمت خارجی ماه (تحدب و کوژی ماه، برآمدگی و برجستگی ماه) مانند پیکانی جهت غرب را نشان می‌دهد. در نیمهٔ دوم ماه‌های قمری، تحدب ماه به سمت مشرق است.

اگر خطی از بالای هلال به پایین آن وصل کنیم و ادامه دهیم، در نیمهٔ اول ماه قمری شکل p و در نیمهٔ دوم شکل q خواهد داشت.
کره ماه در نیمهٔ اول ماه‌های قمری پیش از غروب آفتاب طلوع می‌کند، و در نیمهٔ دوم پس از غروب، تا پایان ماه که پس از نیمه‌شب طلوع می‌نماید.
پیدا کردن جنوب توسط ماه: اگر خطی فرضی میان دو نوک تیز هلال ماه رسم کرده و آن را تا زمین ادامه دهید، تقاطع امتداد این خط با افق، نقطه جنوب را [در نیم‌کرهٔ شمالی زمین] نشان می‌دهد.
این روش جهت‌یابی چندان دقیق نیست، ولی حداقل راه‌نمایی تقریبی را فراهم می‌سازد. در زمان قرص کامل نمی‌توان از این روش استفاده کرد. وقتی ماه به صورت قرص کامل است، می‌توان به کمک حرکت ظاهری ماه (که از مشرق به طرف مغرب است) جهت‌یابی کرد.


روش‌های دیگر جهت‌یابی در شب

حرکت ظاهری ماه در آسمان از شرق به غرب است.
خوشه پروین: دسته‌ای (حدود ده تا پانزده) ستاره، به شکل خوشه انگور، در یک جا مجتمع هستند که به آن مجموعه خوشه پروین می‌گویند. این ستارگان مانند خورشید از شرق به طرف غرب در حرکتند، ولی در همه حال دُمِ آن‌ها به طرف مشرق است.
ستارگان بادبادکی: حدود هفت -هشت ستاره در آسمان وجود دارد که به شکل بادبادک یا علامت سوال می‌باشند. این ستارگان نیز از شرق به غرب حرکت می‌کنند، و در همه حال دنباله بادبادکی آنها به‌طرف جنوب است.
کهکشان راه شیری تودهٔ عظیمی از انبوه ستارگان است که تقریباً از شمال شرقی به جنوب غربی امتداد یافته‌است. در شمال شرقی این راه باریک است، و هر چه به سمت جنوب غربی می‌رود، پهن‌تر می‌شود. هر چه به آخر شب نزدیک‌تر می‌شویم، قسمت پهن راه شیری به طرف مغرب منحرف می‌شود.



روش‌های جهت‌یابی، قابل استفاده در روز و شب

جهت‌یابی با قبله

اگر جهت قبله و میزان انحراف آن از جنوب (یا دیگر جهت‌های اصلی) را بدانیم، می‌توانیم شمال را تشخیص دهیم. مثلاً اگر در تهران ۳۷ درجه از جنوب سمت به غرب متمایل شویم (یعنی حدوداً جنوب غربی)، به طرف قبله ایستاده‌ایم. پس هرگاه در تهران جهت قبله را بدانیم، اگر ۳۷ درجه از سمت قبله در جهت عکس عقربه‌های ساعت بچرخیم، به طرف جنوب ایستاده‌ایم، و اگر ۱۴۳ درجه (۳۷-۱۸۰) در جهت عقربه‌های ساعت بچرخیم، به طرف شمال ایستاده‌ایم.

قبله را از راه‌های مختلفی می‌توان یافت:

قبله‌نما: دقیق‌ترین روش تعیین قبله، به‌وسیلهٔ قبله‌نماست، که آن هم با یک قطب‌نما انجام می‌گیرد؛ و اگر ما قطب‌نما داشته باشیم، با آن قطب را مشخص می‌کنیم!
محراب مسجد: محراب مساجد به طرف قبله‌است. در نمازخانه‌ها هم معمولاً جهت قبله مشخص شده‌است.
قبرستان: مرده را در قبر روی دست راست، به سمت قبله می‌خوابانند. پس اگر شما طوری ایستاده باشید که نوشته‌های سنگ قبر را به درستی می‌خوانید، سمت چپ‌تان قبله‌است.
دستشویی: از آن‌جا که قضای حاجت رو به قبله نباید باشد، معمولاً توالت‌ها را عمود بر قبله می‌سازند.






جهت‌یابی با قطب‌نمای دست‌ساز

اگر قطب‌نمایی به همراه نداشتید، ولی اتفاقاً یک سوزن یا میخ کوچک در جیبتان یافتید، این روش کمک‌کار شما در ساخت یک قطب‌نما خواهد بود. البته احتمال استفاده از آن در شرایط واقعی کم است، ولی انجام آن کاری سرگرم‌کننده‌است.

با مالش دادن یک سوزن فقط در یک جهت به آهن‌ربا -یا حتی احتمالاً چاقوی خودتان-، یا مالیدن آن فقط در یک جهت به پارچهٔ ابریشمی یا پنبه‌ای، سوزنْ مغناطیسی یا قطبی می‌شود؛ مانند سوزن قطب‌نما. (مثلاً با ۳۰ بار مالش دادن سوزن به آهنربا از طرف خودتان به سمت بیرون، سوزن به اندازهٔ کافی خاصیت آهنربایی پیدا می‌کند. همچنین مالش سر سوزن از پایین به بالا بر پارچهٔ ابریشمی باعث می‌شود که سر سوزن نقطه شمال را نشان دهد). حتی می‌توانید آن‌را در یک جهت میان موهای سر خود بکشید. توجه کنید که همیشه فقط در یک جهت مالش دهید.

حال اگر آن‌را روی یک چوب‌پنبه یا پوشال کوچک قرار دهید(سوزن را به چوب‌پنبه چسب بزنید، یا درون آن فرو کنید؛ یا در دو طرف سوزن چوب‌پنبه‌هایی کوچک فرو کنید)، و روی آب (آب راکد یا ظرفی پر از آب) شناور نمایید، مانند یک قطب‌نما عمل می‌کند، و سر سوزن رو به شمال می‌چرخد. برای این‌که سمت شمال و جنوب سوزن را اشتباه نکنید، این نکته را در نظر بگیرید که -در نیمکرهٔ شمالی زمین- آن سمت قطب‌نما که تقریباً رو به خورشید و ماه است، سمت جنوب است، زیرا آن‌ها در قسمت جنوبی آسمان قرار دارند. همچنین می‌توانید سوزن را با یک آهنربا امتحان کنید، و سپس سمت شمال را با علامتی روی آن مشخص نمایید.

روش دیگر ساخت آهنربا این است که یک میله یا سوزن آهنی یا فولادی را در جهت میدان مغناطیسی زمین تراز کنیم، و سپس آن‌را حرارت داده یا بر آن ضربه وارد کنیم. حال اگر این آهنربا را روی سطحی با اصطکاک کم قرار دهیم (روی یک تکه چوب کوچک در آب شناور سازید، یا مثلاً سوزن را با یک ریسمان غیرفلزی آویزان(معلق) نمایید) قطب‌نمای ما کار می‌کند؛ یعنی میله آن‌قدر می‌چرخد تا در راستای میدان مغناطیسی زمین (شمالی-جنوبی) قرار گیرد.
مغناطیسی کردن سوزن با باتری: اگر سیمی را دور سوزن بپیچانید و برای چند دقیقه سر سیم را به ته باتری وصل کنید، سوزن مغناطیسی می‌شود.
به دلیل کشش سطحی آب، می‌توان سوزن را به تنهایی روی سطح آن شناور کرد. مثلاً می‌توان سوزن را روی کاغذی گذاشت، و کاغذ را روی آب گذاشت. اگر کاغذ روی آب بماند که بهتر، و اگر کاغذ در آب فرو برود احتمالاً سوزن روی آب باقی می‌ماند. اگر سوزن را با گریس یا روغنی غیرقابل‌حل در آب چرب کنید (مثلاً با مالش سوزن به موهای خود سوزن را چرب نمایید)، کار آسان‌تر خواهد شد. چرب بودن سوزن سبب می‌شود که سوزن روی سطح آب شناور بماند.
 
ساعت : 2:32 am | نویسنده : admin | مطلب قبلی | مطلب بعدی
شمال غرب | next page | next page