تونل زنی
تونل‌زنی

اکثر شبکه‌های وی‌پی‌ان بمنظورایجاد یک شبکه اختصاصی با قابلیت دستیابی از طریق اینترنت ازامکان تونل‌زنی (به انگلیسی: Tunneling) استفاده می‌نمایند. در روش فوق تمام بسته اطلاعاتی در یک بسته دیگر قرار گرفته واز طریق شبکه ارسال خواهد شد. پروتکل مربوط به بسته اطلاعاتی خارجی (پوسته) توسط شبکه و دو نفطه(ورود و خروج بسته اطلاعاتی) قابل فهم می‌باشد. دو نقظه فوق را اینترفیس‌های تونل می‌گویند. تونل‌زنی مستلزم استفاده از سه پروتکل است:






پروتکل حمل کننده: پروتکلی است که شبکهٔ حامل اطلاعات استفاده می‌نماید.
پروتکل کپسوله‌سازی: از پروتکل‌هائی نظیر IPSec،L2F،PPTP،L2TP یا GRE استفاده می‌گردد.
پروتکل مسافر:از پروتکل‌هائی نظیر IPX،IP یا NetBeui بمنظورانتقال داده‌های اولیه استفاده می‌شود.

با استفاده از روش تونل‌زنی می‌توان عملیات جالبی را انجام داد. مثلاً می‌توان از بسته‌ای اطلاعاتی که پروتکل اینترنت را حمایت نمی‌کند (نظیر NetBeui) درون یک بسته اطلاعاتی آی‌پی استفاده و آن را از طریق اینترنت ارسال نمود و یا می‌توان یک بسته اطلاعاتی را که از یک آدرس آی‌پی غیر قابل روت (اختصاصی)استفاده می‌نماید، درون یک بسته اطلاعاتی که از آدرس‌های معتبر آی‌پی استفاده می‌کند، مستقر و از طریق اینترنت ارسال نمود.

در شبکه‌های وی‌پی‌ان نوع سایت به سایت، از پروتکل جی‌آرای (به انگلیسی: GRE یا generic routing encapsulation) بعنوان پروتکل کپسوله‌سازی استفاده می‌گردد. فرایند فوق نحوه استقرار و بسته‌بندی پروتکل مسافر از طریق پروتکل حمل کننده برای انتقال را تبین می‌نماید. پروتکل حمل کننده، عموماً آی‌پی است. این فرایند شامل اطلاعاتی در رابطه با نوع بسته‌های اطلاعاتی برای کپسوله نمودن و اطلاعاتی در رابطه با ارتباط بین سرویس گیرنده و سرویس دهنده‌است. در برخی موارد از پروتکل آی‌پی‌سک (در حالت تونل) برای کپسوله‌سازی استفاده می‌گردد. پروتکل آی‌پی‌سک، قابل استفاده در دو نوع شبکه وی‌پی‌ان (سایت به سایت و دستیابی از راه دور) است. اینترفیس‌های تونل می‌بایست دارای امکانات حمایتی از آی‌پی‌سک باشند.

در شبکه‌های وی‌پی‌ان نوع دستیابی از راه دور، تونل‌زنی با استفاده از PPP انجام می‌گیرد. پروتکل نقطه به نقطه به عنوان حمل کننده سایر پروتکل‌های آی‌پی در زمان برقراری ارتباط بین یک سیستم میزبان و یک سیستم ازه دور، مورد استفاده قرار خواهد گرفت. هر یک از پروتکل‌های زیر با استفاده از ساختار اولیه PPP ایجاد و توسط شبکه‌های وی‌پی‌ان دستیابی از راه دور استفاده می‌گردند:






پروتکل‌های درون تونل

تونل‌زنی را می‌توان روی دو لایه از لایه‌های OSI پیاده کرد. PPTP و L2TP از لایه ۲ یعنی پیوند داده استفاده کرده و داده‌ها را در قالب Frameهای پروتکل نقطه به نقطه (PPP) بسته بندی می‌کنند. دراین حالت می‌توان از ویژگی‌های PPP همچون تعیین اعتبار کاربر، تخصیص آدرس پویا (مانند DHCP)، فشرده سازی داده‌ها یا رمز گذاری داده‌ها بهره برد.

با توجه به اهمیت ایمنی انتقال داده‌ها در وی‌پی‌ان، دراین میان تعیین اعتبار کاربر نقش بسیار مهمی دارد. برای این کار معمولاً از CHAP استفاده می‌شود که مشخصات کاربر را در این حالت رمز گذاری شده جابه جا می‌کند. Call back هم دسترسی به سطح بعدی ایمنی را ممکن می‌سازد. در این روش پس از تعیین اعتبار موفقیت آمیز، ارتباط قطع می‌شود. سپس سرویس دهنده برای برقرار کردن ارتباط جهت انتقال داده‌ها شماره‌گیری می‌کند. هنگام انتقال داده‌ها، Packetهای IP، IP X یا NetBEUI در قالب Frameهای PPP بسته‌بندی شده و فرستاده می‌شوند. PPTP هم Frameهای PPP را پیش از ارسال روی شبکه بر پایه IP به سوی کامپیوتر مقصد، در قالب Packetهای IP بسته بندی می‌کند. این پروتکل در سال ۱۹۹۶ از سوی شرکت‌هایی چون مایکروسافت، Ascend، 3 com و Robotics US پایه گذاری شد. محدودیت PPTP در کار تنها روی شبکه‌های IP باعث ظهور ایده‌ای در سال ۱۹۹۸ شد. L2TP روی X.۲۵،Frame Relay یا ATM هم کار می‌کند. برتری L2TP در برابر PPTP این است که به طور مستقیم روی رسانه‌های گوناگون WAN قابل انتقال است.






Layer 2 Forwarding

پروتکل L2F توسط سیسکو ایجاد شده‌است. در این پروتکل از مدل‌های تعیین اعتبار کاربر که توسط PPP حمایت شده‌اند استفاده شده‌است.






پروتکل تونل‌زنی نقطه به نقطه

پروتکل PPTP توسط کنسرسیومی متشکل از شرکت‌های متفاوت ایجاد شده‌است. این پروتکل امکان رمزنگاری ۴۰ بیتی و ۱۲۸ بیتی را دارا بوده و از مدل‌های تعیین اعتبار کاربر که توسط PPP حمایت شده‌اند، استفاده می‌نماید.






پروتکل تونل‌زنی لایه دوم

پروتکل L2TP با همکاری چندین شرکت ایجاد شده‌است. این پروتکل از ویژگی‌های PPTP و L2F استفاده کرده‌است. پروتکل L2TP بصورت کامل آی‌پی‌سک را حمایت می‌کند. از پروتکل فوق بمنظور ایجاد تونل بین موارد زیر استفاده می‌گردد:

سرویس گیرنده و روتر
NAS و روتر






روتر و روتر

عملکرد تونل‌زنی مشابه حمل یک کامپیوتر توسط یک کامیون است. فروشنده، پس از بسته بندی کامپیوتر (پروتکل مسافر) درون یک جعبه (پروتکل کپسوله‌سازی) آن را توسط یک کامیون (پروتکل حمل کننده) از انبار خود (ایترفیس ورودی تونل) برای متقاضی ارسال می‌دارد. کامیون (پروتکل حمل کننده)از طریق بزرگراه (اینترنت) مسیر خودرا طی، تا به منزل شما (اینترفیش خروجی تونل) برسد. شما در منزل جعبه (پروتکل کپسول سازی) را باز و کامیون (پروتکل مسافر)راازآن خارج می‌نمائید.





شبکه ذخیره‌سازی
شبکه ذخیره سازی(SAN)

در سیستمهای کامپیوتری، برای اتصال دستگاههای ذخیره سازی به سرورها، به صورت از راه دور (Remote)، از مفهومی با نام شبکه ذخیره سازی(SAN) استفاده می‌شود.(مانند آریه دیسکها(Disk Array)) و به صورت محلی برای سیستم‌عامل سرور مربوطه نمایش داده می‌شود.






شبکه ذخیره سازی(SAN)در تعریف کلی

شبکه ذخیره شازی اطلاعات (SAN) که مخفف کلمه ی (Storage Area Network): این نوع شبکه بیشتر برای ساخت یک بستر مناسب برای انتقال داده ها و اطلاعات حجیم بین سرویس دهنده ها و سرویس گیرنده ها بر پا می گردد.(برگرفته از منبع)
مشخصات و توضیحات تکمیلی شبکه ذخیره سازی(SAN)

سرویس دهنده ذخیره سازی یا (storage – server) دارای حجم زیادی از اطلاعات می باشند که برای انتقال داده ها و ارائه خدمات مناسب نیاز به پهنای باند بالا می باشد. از مشخصات این نوع شبکه می توان داشتن بازده بالا برای انتقال حجم زیادی از داده ها ، در دسترس بوده همیشگی سرویس دهنده ها حتی در فاصله های دور و طولانی و گستردگی زیاد در ابعاد شبکه های محلی یا شبکه های شهری یا جهانی می باشد.(برگرفته از منبع)






SANچیست؟

انباره (Storage) ذخیره سازی متصل به شبکه (Nas) دستگاهی است که به صورت اشتراکی در شبکه مورد استفاده قرار می‌گیرد. این دستگاه، با استفاده از NFS (سیستم فایلی شبکه‌ای مختص یونیکسی)، CIFS (سیستم فایلی شبکه‌ای مختص محیط‌های ویندوزی)، FTP، HTTP و سایر پروتکل‌ها با اجزای شبکه ارتباط برقرار می‌کند. وجود NAS در یک شبکه برای کاربران آن شبکه افزایش کارایی و استقلال از سکو را به ارمغان می‌آورد، گویی که این انباره مستقیماً به کامپیوتر خودشان متصل است.

خود دستگاه NAS یک وسیله پر سرعت، کارآمد، تک منظوره و اختصاصی است که در قالب یک ماشین یا جعبه عرضه می‌شود. این دستگاه طوری طراحی شده که به تنهایی کار کند و نیازهای خاص ذخیره سازی سازمان را با استفاده از سیستم‌عامل و سخت‌افزار و نرم‌افزار خود در بهترین حالت برآورده سازد. NAS را می‌توان مثل یک دستگاه Plug-and-play در نظر گرفت که وظیفه آن تامین نیازمندی‌های ذخیره سازی است. این سیستم‌ها با هدف پاسخگویی به نیازهای خاص در کوتاه‌ترین زمان ممکن (به صورت بلا درنگ) طراحی شده‌اند. ماشین NAS برای به کار گیری در شبکه‌هایی مناسب تر است که انواع مختلف سرور و کلاینت در آنها وجود دارند و وظایفی چون پراکسی، فایروال، رسانه جریانی و از این قبیل را انجام می‌دهند.

دسته‌ای از دستگاه‌های NAS به نام "فایلر" امکان به اشتراک گذاشتن فایل‌ها و داده‌ها را میان انواع متفاوت کلاینت‌ها فراهم می‌سازند.





شبکه شبکه‌ها

شبکه بهم‌پیوسته یا شبکه تقابلی که برگردانی برای واژهٔ «internet» (به معنای عام و با i کوچک) است، شبکه‌ای است که از ارتباط دو یا چند شبکه رایانه‌ای تشکیل می‌شود.






شبکه‌های بهم‌پیوسته و شبکهٔ جهانی

شبکهٔ جهانی اینترنت بهترین مثالی است که می‌توان از یک شبکهٔ بهم‌پیوستهٔ گسترده در سطح جهانی نام برد. بسیاری از استانداردها و قراردادهایی که امروزه در پیاده‌سازی شبکه‌های بهم‌پیوسته بکار برده می‌شوند از تلاش‌های ابتدایی تعدادی از دانشمندان برای قانون‌مند کردن «شبکهٔ جهانی اینترنت» و همسازن‌نمودن شیوه‌های ارتباط در آن حاصل شده‌است.







شبکه محلی مجازی

شبکه محلی مجازی یک دامنه پخش مجزا در سوئیچ است.






تفکیک دامنه پخش

هر سوئیچ به صورت پیشفرض یک دامنه پخش است اما برای جلوگیری از توفان پخش بسته های اطلاعاتی و یا کاهش پخش بسته های اطلاعاتی در لایه 2، می توان با ایجاد شبکه های محلی مجازی، یک سوئیچ را به دو یا چند دامنه پخش مجزا تفکیک نمود.

دو رایانه ای که به یک سوئیچ متصل هستند چنانچه هر یک در یک شبکه محلی مجازی متفاوت باشند قادر به برقراری ارتباط در لایه 2 نخواهد بود.





شبکه شخصی

شبکه شخصی، یک شبکه رایانه‌ای است که برای ارتباطات میان وسایل رایانه‌ای که اطراف یک فرد می‌باشند (مانند تلفنها و رایانه‌های جیبی (PDA) که به آن دستیار دیجیتالی شخصی نیز می‌گویند) بکار می‌رود. این که این وسایل ممکن است متعلق به آن فرد باشند یا خیر جای بحث خود را دارد. برد یک شبکه شخصی عموماً چند متر بیشتر نیست. موارد مصرف شبکه‌های خصوصی می‌تواند جهت ارتباطات وسایل شخصی چند نفر به یکدیگر و یا برقراری اتصال این وسایل به شبکه‌ای در سطح بالاتر و شبکه اینترنت باشد.

ارتباطات شبکه‌های شخصی ممکن است به صورت سیمی به گذرگاه‌های رایانه مانند USB و فایروایر برقرار شود. همچنین با بهره‌گیری از فناوری‌هایی مانند IrDA، بلوتوث و UWB می‌توان شبکه‌های شخصی را به صورت بیسیم ساخت.






بلوتوث (Bluetooth)

شبکه خصوصی مبتنی بر فناوری «بلوتوث» که همچنین «پیکونت» (Piconet) نیز نامیده می‌شود از ۸ وسیله فعال تشکیل می‌شود که بین آنها رابطه کارخواه-کارساز (Client-Server) برقرار است (تا ۲۵۵ وسیله می‌توانند در حالت پارک شده در این شبکه شرکت داشته باشند). اولین وسیله «بلوتوث» در شبکه پیکونت نقش کارساز را بر عهده می‌گیرد و دیگر وسایل همه کارخواههایی هستند که با خدمتگذار ارتباط برقرار می‌کنند. برد یک شبکه پیکونت عموماً حدود چند ده متر است، اگرچه با استفاده ازتقویت کننده‌های مخصوص به حدود ۱۰۰ متر نیز می‌رسد.

نوآوری‌های اخیر در «آنتن»های «بلوتوث» به این وسایل اجازه داده است تا از بردی که در ابتدا برای آن طراحی شده است بسیار فراتر قدم بگذارند. در همایش دوازدهم DEF CON (همایش سالانه «هکر»ها که در «لاس‌وگاس» برگزار می‌شود)، گروهی از هکرها که با عنوان Flexilis شناخته می‌شوند، توانستند دو وسیله «بلوتوث» را که حدود نیم مایل (۸۰۰ متر) از یکدیگر دور بودند با موفقیت به هم متصل کنند. آنها از آنتنی مجهز به یک «نوسان‌نما» (Scope) و یک «آنتن یاگی» (Yagi) استفاده کردند که همه آنها به قنداق یک تفنگ متصل شده بود. کابلی آنتن را به کارت «بلوتوث» در رایانه متصل می‌کرد. بعدها آنتن را «تیرانداز آبی» نامیدند.






دیگر فناوریها

یک فناوری دیگر شبکه‌های شخصی با عنوان Skinplex اطلاعات را با استفاده از ناحیه خازنی اطراف پوست انسان منتقل می‌کند. وسایلی که از این فناوری استفاده می‌کنند در فاصله ۱ متری اطراف بدن انسان می‌تواند شناسایی شوند و با یکدیگر ارتباط برقرار کنند. این فناوری قبلا برای کنترل دسترسی به قفل درها و برای جلوگیری از متراکم شدن سقف ماشین‌های سقف تاشو استفاده شده است.






شبکه کلان‌شهری
شبکه کلانشهری (به انگلیسی: Metropolitan Area Network) یک «شبکه رایانه‌ای» بزرگ است که معمولاً در سطح یک شهر گسترده می‌شود. در این شبکه‌ها معمولاً از «زیرساخت بیسیم» و یا اتصالات «فیبر نوری» جهت ارتباط محل‌های مختلف استفاده می‌شود.






تعریف

استاندارد IEEE 802-2001 شبکه کلانشهری را به صورت زیر تعریف می‌کند:

«یک شبکه کلانشهری برای ناحیه جغرافیایی بزرگ‌تری از یک شبکه محلی بهینه شده است، و از حد چندید بلوک ساختمانی تا گستره یک شهر را می‌تواند شامل شود. سرعت شبکه‌های کلانشهری نیز مانند شبکه‌های محلی می‌تواند بسته به کانال‌های ارتباطی از حدود متوسط تا سرعت‌های بالا تغییر کند. مالکیت و اداره یک شبکه شهری می‌تواند در اختیار یک سازمان باشد، ولی معمولاً سازمان‌ها و افراد بسیاری در این امر نقش ایفا می‌کنند. همچنین ممکن است که شبکه‌های شهری به عنوان خدمات عمومی در اختیار و اداره دولت باشد. این شبکه‌ها اغلب برای اتصال شبکه‌های محلی مختلف به یکدیگر بستر مناسب را ارائه می‌دهند.»






جنبه‌های فنی

بعضی فناوری‌ها که به این هدف بکار می‌روند عبارت‌اند از «حالت انتقال ناهمگام» (ATM)، فناوری FDDI و SMDS. این فناوری‌های قدیمی‌تر در حال جایگزین شدن با شبکه‌های کلانشهری هستند که بر اساس «اترنت» (Ethernet) کار می‌کنند (به عنوان نمونه «مترواترنت» (Metro Ethernet) که در بسیاری از مناطق پیاده‌شده است). شبکه کلانشهری که ارتباطات بین «شبکه‌های محلی» را بدون نیاز به کابل‌کشی فراهم کنند نیز ساخته شده‌اند و از ارتباطات «میکروویو» (Microwave)، «رادیویی» (Radio) و یا «لیزر مادون قرمز» (Infra-red Laser) استفاده می‌کند. استاندارد DQDB یک استاندارد شبکه کلانشهری برای ارتباطات دیتا است. این استاندارد در استاندارد IEEE 802.6 تعریف شده است. با استفاده از استاندارد DQDB شبکه‌ها می‌توانند تا ۳۰ مایل گسترده شوند و در سرعت‌های بین 34 تا 155Mbit/s عمل کنند.






خصوصیات

1-اجازه دسترسی های زیاد و پهنای باند بالا-2- یک ارتباط دائمی برای سرویس های محلی موجود در شبکه فراهم می کند-3- در یک ناحیه ی جغرافیایی خاص عمل می کند-4- تجهیزات نشان داده شده را به راحتی در محیط فیزیکی به یکدیگر متصل می کند-4- کنترل شبکه را نحن یک مدیریت محلی امکان پذیر می کند.






پروتکل های موجود دراین شبکه

واز پروتکل های موجود در شبکه های محلی می توان (FDDI)، توکن رینگ و اترنت را نام برد.






بیت بر ثانیه

نرخ بیت، سرعت بیت (به انگلیسی: Bitrate/Bit rate) یا بیت بر ثانیه به معنای سرعت انتقال بیت از محلی به محل دیگر است. به بیان دیگر نرخ بیت نشان می‌دهد که در مدت زمانی معینی چه مقدار اطلاعات از جایی به جای دیگر ارسال می‌شود. معمولاً نرخ بیت را با بیت بر ثانیه (bps)، کیلوبیت بر ثانیه (kbps) یا مگابیت بر ثانیه (Mbps) اندازه می‌گیرند.


نرخ بیت همچنین می‌تواند کیفیت یک فایل صوتی یا ویدئویی را نشان دهد. برای مثال یک فایل MP3 که با نرخ بیت ۱۹۲ کیلوبیت بر ثانیه فشرده شده باشد نسبت به فایلی که با نرخ بیت ۱۲۸ کیلوبیت بر ثانیه فشرده شده باشد دارای کیفیت بهتری است. در واقع هر چه نرخ بیت بالاتر باشد بیت‌های بیشتری برای ارائه اطلاعات در هر ثانیه به کار می‌روند. به همین نحو یک فایل ویدئویی با نرخ بیت ۳۰۰۰ کیلوبیت بر ثانیه دارای کیفیت بیشتری نسبت به یک فایل ویدئویی با نرخ بیت ۱۰۰۰ کیلو بیت بر ثانیه است.





تبادل الکترونیکی داده
تبادل داده‌های تجاری تحت استانداردی خاص که مورد توافق طرفین باشد از یک رایانه به رایانه دیگر بدون دخالت متصدی را تبادل الکترونیکی داده گویند. معتبرترین شیوه تبادل الکترونیکی داده یی دی آی (EDI) نام دارد که اولین بار در سال ۱۹۷۰ میلادی (برابر با ۱۳۴۹ شمسی) توسط شبکه‌های افزاینده ارزش موسوم به VAN برای جایگزینی انتقال داده به‌وسیله مودم و یا سیستم‌های متداول کاغذی ارائه شد. خدمت ارائه شده از استاندارد X۱۲ تعریف شده توسط موسسه ملی استاندارد آمریکا موسوم به ANSI برای تعریف داده‌ها استفاده می‌کرد که هنوز مورد استفاده در آمریکای شمالی و سایر نقاط دنیا می‌باشد. بعدها سازمان ملل استاندارد دیگری را به نام EDIFACT معرفی و به اعضا پیشنهاد کرد که بیشتر در اروپا متداول می‌باشد.
لازم به تذکر است که تبادل الکترونیکی داده مستقل از استاندرد تعریف داده و یا پروتکل انتقال داده می‌باشد ولی برخی به غلط آن را فقط مختص استانداردهای X۱۲ و EDIFACT می‌داند در حالی که با پیدایش اینترنت و XML فصل نوینی در تبادل الکترونیکی داده گشوده شده‌است.






مزایا

تسریع در انجام امور تجاری
کاهش هزینه
افزایش درآمد
کاهش خطا

معایب

هزینه اولیه پیاده سازی
نیاز به نیروی انسانی ماهر







استانداردهای تعریف داده‌های تجاری

اگر چه دو استاندارد ASC X۱۲ و UN EDIFACT از متداول‌ترین استانداردهای داده می‌باشند که به طور گسترده در سراسر دنیا مورد استفاده قرار گرفته‌اند ولی با پیدایش XML استانداردهای دیگری که خاص مجموعه کاری مشخصی هستند طراحی و عرضه شدند.

EDI
ASC X۱۲ - اولین استاندارد داده الکترونیکی که توسط سازمان استاندارد ملی آمریکا ارائه شد. این استاندارد بطور عمده در آمریکا شمالی مورد استفاده قرار میگرد.
UN EDIFACT - استاندارد عرضه شده توسط سازمان ملل که بطور عمده در اروپا مورد استفاده قرار میگرد.
HIPAA
XML
ebXML
RosettaNet
cXML







پروتکل‌های انتقال داده‌های تجاری

پروتکل‌های ارتباطی متنوعی در دسترس می‌باشند که بسته به نوع ارتباط کاری بین دو مجموعه مورد استفاده قرار می‌گیرند. پروتکلها بر اساس بستر پیاده سازی آنها که می‌تواند شبکه‌های افزاینده ارزش و یا اینترنت باشد گروه بندی می‌شوند.






پروتکلهای بر مبنا شبکه‌های افزایش ارزش

BISYNC







پروتکلهای بر مبنا اینترنت

AS۱
AS۲
AS۳
GISB







مرحله پیاده سازی

پیش زمینه هرگونه تبادل داده‌ای بین دو مجموعه تجاری انجام مذاکرات تجاری برای عقد قرارداد می‌باشد و تنها بعد از برقراری روابط تجاری است که دو مجموعه به پیاده سازی تبادلات الکترونیکی می‌پردازند.
تعیین و تعریف نوع داده و مستنداتی که باید بین دو مجموعه تبادل شود که معمولاً از طرف یک مجموعه بر دیگری تحمیل می‌شود. شرکتهای معتبر تجاری مستندات مربوط به تعریف داده در قالب‌های استاندارد مورد نیاز خود را به همراه تفسیر خود از داده‌ها در اختیار شرکای تجاری خود قرار می‌دهند. این مستندات را بطور معمول راهنمای تبادل الکترونیکی داده (EDI Guidelines) می‌نامند.
پیاده سازی مستندات تنها مربوط به داده‌هایی می‌باشد که برای اولین بار قرار است تولید و مبادله شود.
از آنجا که کلیه مبادلات باید رمزگذاری شود، طرفین کلیدهای عمومی رمزگشا را تبادل می‌کنند تا قادر به رمزگشایی داده‌های دریافتی باشند.
با استفاده از یک پروتکل ارتباطی است که معمولاً از طرف یکی از طرفین تبادل بر دیگری تحمیل می‌شود بطور آزمایشی مستنداتی تبادل می‌شود تا دو مجموعه از صحت پروسه اطمینان حاصل کنند.







مرحله عملیاتی

سناریوی ساده زیر مراحل تولید تا ارسال داده را شرح می‌دهد.

سیستم تجاری
داده در سیستم تحاری موجود در یکی از طرفین تجارت تولید می‌شود.
سیستم مدیریت مستندات تجاری
بررسی صحت داده‌ها و تطبیق آن با دادهای مورد نیاز شریک تجاری
تبدیل داده‌ها به قالب استاندارد مورد پذیرش شریک تجاری
ثبت مستندات جهت بازرسی و ممیزی داده‌های تجاری
نرم‌افزار ارتباطی
رمزگذاری داده‌ها با استفاده از کلید خصوصی
ارسال داده‌ها از طریق پروتکل تعیین شده بین طرفین
دریافت «تایید ارسال پیام» (MDN)
رمزگشایی «تایید ارسال پیام» با استفاده از کلید عمومی شریک تجاری
سیستم مدیریت مستندات تجاری
بروزرسانی داده‌های بازرسی (ثبت ارسال موفقیت آمیز داده)







مقدار

در علوم رایانه مقدار عبارتی است که بیشتر نمی‌تواند ارزیابی شود (یک حالت نرمال). اعضای یک نوع داده مقادیر آن نوع هستند. برای مثال عبارت «۱ + ۲» یک مقدار نیست به این دلیل که می‌تواند به «۳» کاهش یابد. این عبارت نمی‌تواند بیشتر از این کاهش یابد (و عضوی از نوع دادهٔ اعداد طبیعی است) پس بنابراین یک مقدار است.

«مقدار یک متغیر» به نگاشتی در یک محیط اشاره دارد. در زبان‌های برنامه‌نویسی که دارای ویژگی اختصاص متغیر هستند نیاز می‌شود که بین r-value (یا محتویات) و l-value (یا محل) یک متغیر متمایز باشد.





واحدهای حافظه رایانه

واحدهای حافظه:

Bit (بیت) : بیت کوچک‌ترین واحد حافظه است که فقط دو مقدار صفر (۰) یا یک (۱) را می‌توان در آن ذخیره کرد.
Byte (بایت) : هر بایت برابر ۸ بیت است، معمولاً حجم هر کارکتری (کاراکتر یعنی ارقام، حروف یا علامتها) برابر یک بایت است، به عبارتی هر کاراکتر یک بایت فضا اشغال می‌کند.
Nibble (نيبل) : به مجموعه 4 بـيت كه كنار هم قرار گرفته باشند يك نيبل گفته مي شود .
KB (کیلوبایت) : هر کیلوبایت برابر ۱۰۲۴ بایت است، به عبارتی هر کیلوبایت برابر ۲۱۰ بایت است.
MB (مگابایت) : هر مگابایت برابر ۱۰۲۴ کیلوبایت است، به عبارتی هر مگابایت برابر ۲۱۰ کیلوبایت است.
GB (گیگابایت) : هر گیگابایت برابر ۱۰۲۴ مگا بایت است، به عبارتی هر گیگابایت برابر ۲۱۰ مگابایت است.
TB (ترابایت) : هر ترابایت برابر ۱۰۲۴ گیگابایت است، به عبارتی هر ترابایت برابر ۲۱۰ گیگابایت است.
PB (پتابایت) : هر پتابایت برابر ۱۰۲۴ ترابایت است، به عبارتی هر پتابایت برابر ۲۱۰ ترابایت است.
EB (اگزابایت) : هر اگزابایت برابر ۱۰۲۴ پتابایت است، به عبارتی هر اگزابایت برابر ۲۱۰ پتابایت است.
ZB (زتابایت) : هر زتابایت برابر ۱۰۲۴ اگزابایت است، به عبارتی هر زتابایت برابر ۲۱۰ اگزابایت است.
YB (یوتابایت) : هر یوتابایت برابر ۱۰۲۴ زتابایت است، به عبارتی هر یوتابایت برابر ۲۱۰ زتابایت است.
SB (سوتابایت) : هر سوتابایت برابر ۱۰۲۴ یوتابایت است، به عبارتی هر سوتابایت برابر ۲۱۰ یوتابایت است.







بیت

بیت (از انگلیسی، کوتاه شده binary digit=رقم دوتائی) به معنای رقم در مبنای دو است. همان‌طور که در عددنویسی در مبنای ده، که عددنویسی رایج امروز در کارهای روزمره‌است، ده رقم ۰، ۱، ۲، ۳، ۴، ۵، ۶، ۷، ۸ و ۹ به‌کار می‌رود، در عددنویسی در مبنای دو فقط دو رقم وجود دارد: صفر و یک. به هریک از این ارقام یک بیت می‌گویند. مثلاً عددی مثل ۱۰۰۱۱۰۱ در مبنای دو، هفت رقم یا هفت بیت دارد.

«بیت» در نظریه اطلاعات به معنای «کوچک‌ترین واحد اطّلاعات» نیز به کار می‌رود.






ریشه لغت

مخفف: b

سرواژه عبارت: Bit

خود کلمه Bit مخفف عبارت binary digit است.






بیت

یکای اندازه گیری داده است به طوری که هر ۸ بیت معادل ۱ بایت است.

بیت، یک عدد در مبنای ۲ است.در واقع بیت کوچک‌ترین واحد ذخیره داده در ذخیره و بازیابی داده است.






بیت توازن

یک بیت اضافی که برای کنترل خطا در گروه‌هایی از بیت‌های ارسالی در بین سیستم‌های کامپیوتری، مورد استفاده قرار می‌گیرد. در میکروکامپیوترها، این اصطلاح همراه ارتباطات مودم به مودم میکروکامپیوترها زیاد دیده می‌شود و اغلب نیز برای کنترل صحت کاراکترهای مخابره شده به کار می‌رود. در این روند، کامپیوتر، فرستنده، یک بیت توازن به هر گروه از بیت‌ها (تک تک بایتها) اضافه می‌کند. تنظیم این بیت توازن به نوع توازن مورد استفاده بستگی دارد.

این روش بدین صورت است که ما از توازن زوج یا توازن فرد استفاده می‌کنیم.یعنی تعداد یکها را طبق قرار داد یا زوج می‌کنیم یا فرد، بدین ترتیب براحتی می‌توان داده‌های اشتباه را شناسایی کرد.






نیبل

در رایانش، یک نیبل (انگلیسی: nibble یا نایبل انگلیسی: nyble تا با بایت هم‌وزن شود) یک تراکم چهار-بیتی یا نیم هشت‌تایی است. از آنجایی که نیبل چهار بایتی است، میتواند ۱۶ (۲۴) ارزش متفاوت به خود بگیرد بنابراین با یک عدد شانزده‌شانزدهی برابر است.

یک بایت کامل (هشت‌تایی) توسط دو عدد شانزده‌تایی نمایش داده شده است؛ بنابراین، مرسوم است تا بایت‌های اطلاعات را با دو نیبل نشان دهند. نیبل غالبا در موضوعات شبکه یا مخابرات، "نیمه‌هشت‌تایی" یا "چهارتایی" خوانده می‌شود.





بایت

بایت یکی از یکاهای اساسی سنجش مقدار داده‌ها در رایانه و به معنی هشت بیت متوالی است. همچنین در بسیاری از زبان‌های برنامه‌نویسی، یک نوع داده (به انگلیسی: Data Type) صحیحی با این نام وجود دارد.

یک بایت معادل یک نویسه است و در پردازندههای هشت‌بیتی برابر با طول ثبات‌ها، تعداد بیت‌های قابل محاسبه در واحد محاسبه و منطق پردازنده، تعداد خطوط مسیر داده (به انگلیسی: Data Bus) یا تعداد خطوط مسیر آدرس (به انگلیسی: Address Bus) است.






ابهام‌زدایی

در مورد مقیاس‌های بزرگتر (مضارب بایت)، از دو تعریف متفاوت استفاده می‌شود که اولی مبتنی بر توان‌هایی از عدد ۲ است؛ مثلا کیلوبایت برابر با ۲۱۰ و مگابایت برابر با ۲۲۰ است. در این تعریف از دستگاه اعداد دودویی استفاده شده است. اما، تعریف دوم مبتنی بر دستگاه اعداد دهدهی است و از توان‌های ۱۰ برای بیان حجم داده‌های دیجیتال استفاده می‌کند. بدین ترتیب، برای مثال پیشین، کیلوبایت معادل ۱۰۳ و مگابایت برابر با ۱۰۶ خواهد بود. گفتنی است که کاربرد یکی از این دو تعریف بستگی به کاربرد آن دارد. بدین صورت که برای بیان گنجایش حافظه دیسک سخت و حجم داده‌های انتقال در مخابرات و شبکه‌های رایانه‌ای از توان ۱۰ ولی برای بیان ظرفیت حافظه تصادفی رایانه (به انگلیسی: RAM) از توان دودویی آن استفاده می‌شود.





کیلوبایت

کیلوبایت (به انگلیسی: kilobyte) یا KB، یکای اطلاعات و ذخیرسازی در رایانه است. این واژه از پیشوند کیلو (به معنی ۱۰۰۰) و کلمه بایت تشکیل شده‌است. هر کیلوبایت، بسته به مفهوم برابر با ۱۰۰۰ بایت (۱۰۳) و یا ۱۰۲۴ بایت (۲۱۰) است.

علامت کوتاه شدهٔ این یکا از این قبیل هستند: KB, kB, K و Kbyte






ابهام

گر چه تعریف رسمی کیلوبایت در منابع معادل ۲۱۰ منظور شده است ، اما در منابع فنی قدیمی‌تر و همین طور امروزه گاهی در کاربرد عام و برای راحتی آن را معادل ۱۰۰۰ بایت نیز در نظر گرفته‌اند. دلیل این ابهام این است که در صنعت رایانه، برای ذخیره‌سازی اطلاعات از «صفر» و «یک» استفاده می‌شود و برای نشانی‌دهی به محل ذخیره‌سازی آن‌ها نیز مبنای دو و دستگاه اعداد دودویی به کار گرفته می‌شود. علت استفاده از ۱۰۰۰ نیز به دلیل راحتی محاسبات ظرفیت انباره‌های ذخیره‌سازی به صورت مضربی از عدد ۱۰۰۰ است. در نتیجه اندازه‌های حافظه مضرب صحیح از هزار می شوند. به دلیل این که ۲۱۰ برابر با ۱۰۲۴ (تقریبا ۱۰۰۰) است، علامت K





(حرف بزرگ، برای کیلو) به عنوان یک پیشوند تقریبی برای یکاهای مضرب ۱۰۲۴ در گنجایش حافظه‌ها استعمال می‌شود. به عنوان مثال:

در سال ۱۹۷۴ میلادی، در مستندات کامپیوتر HP 21MX ظرفیت ۱۹۶،۶۰۸ بایت (یعنی ۱۹۲ * ۱۰۲۴) را ۱۹۶ کیلوبایت ثبت کرده است.
فلاپی دیسک پنج و یک چهارم اینجی «شوگارت» (به انگلیسی: Shugart) که در سال ۱۹۷۶ ساخته شد، ظرفیت ۱۰۹،۳۷۵ را به صورت ۱۱۰ کیلوبایت منظور کرده بود. یعنی تقریبا از مضرب ۱۰۰۰ استفاده کرده بوده است.
در روزگار نوین هم مک اواس ایکس اسنو لئوپارد فایل‌های ۶۵،۵۳۶ بایتی را ۶۶KB‌ به حساب آورده است. ؛ یعنی به نزدیک مضرب هزار گرد کرده است. از سوی دیگر، ویندوز ۷ شرکت مایکروسافت همین عدد را به ۱۰۲۴ تقسیم و آن را ۶۴KB در نظر گرفته است.

برخی پیشنهاد دادند که حرف بزرگ K برای تمییز دادن از یکای k در سامانه استاندارد بین‌المللی یکاها (به انگلیسی: SI System) استفاده شود. اما این نظر هیچ وقت به طور رسمی پذیرفته نشد. به این دلیل که برای یکاهای به خصوص دیگر بسط پذیر نیست، چرا که سیستم SI قبلا برای «میلی» و «مگا» به ترتیب «m» و «M» را استفاده کرده است.






مگابایت

مِگابایت (به انگلیسی: Megabyte) یا MB، یکای اطلاعات و ذخیرسازی در رایانه است. این واژه از پیشوند مگا و کلمه بایت تشکیل شده‌است. به طور کلی دو تعریف از مِگابایت موجود است. در تعریف نخست منظور از مِگابایت ۲۲۰ بایت یا ۱٬۰۴۸٬۵۷۶ بایت می‌باشد. این تعریف عموماً در مورد میزان فضای ذخیره‌سازی داده‌ها در رایانه به کار می‌رود. در این تعریف یک مِگابایت را مبی‌بایت (به انگلیسی: en: mebibyte) نیز می‌خوانند. در تعریف دوم از واحد سیستم استاندارد بین‌المللی واحدها مِگا استفاده می‌شود. پس بدین شکل یک مگابایت برابر یک میلیون بایت است. این تعریف مورد تایید SI و IEC است و اکثر سازندگان ادوات سخت‌افزاری ذخیره‌سازی داده از آن استفاده می‌کنند. در تعریف سوم که بسیار نادرتر است مِگابایت را کیلو کیلوبایت (کیلوی اول معادل ۱۰۰۰) فرض کرده و برابر ۲۱۰ × ۱۰۳ یا ۱٬۰۲۴٬۰۰۰ بایت می‌گیرند.

Pictogram voting comment.svg توضیح:: اختلاف اندازه داده در تعریف دوم و سوم یکی از مشکلات رایج در کامپیوتر می‌باشد. برای مثال یک فروشنده دیسک سخت میزان فضای دیسک خود را ۱۰۰ مگابایت (بنا بر تعریف دوم) عنوان می‌کند، در صورتی که رایانه این میزان را کمتر نشان می‌دهد (بنا بر تعریف سوم).

گاهی این واحد را با سرواژهٔ MB (که نباید با Mb سرواژه برای مگابیت اشتباه شود) و گاه به شکل خلاصه شدهٔ «مِگ» (meg) نیز می‌خوانند.






نمونه کاربرد

بسته به نوع قالب‌بندی حافظه، یک مگابایت می‌تواند تقریبا فضای حافظه لازم برای ذخیره‌سازی موارد زیر باشد:

یک عکس ۱۰۲۴ * ۱۰۲۴ پیکسل در قالب فایل bmp
یک دقیقه موسیقی با نرخ ۱۲۸ کیلوبیت بر ثانیه با قالب فایل mp3
شش ثانیه از موسیقی فشرده‌نشده روی سی‌دی
حجم تقریبی یک کتاب به زبان انگلیسی، فقط متن (۵۰۰ صفحه، هر صفحه ۲۰۰۰ کاراکتر)






گیگابایت (یکا)

گیگابایت (به انگلیسی: Gigabyte) یا GB، یکای اطلاعات و ذخیره‌سازی در رایانه است. این واژه از پیشوند گیگا و کلمهٔ بایت تشکیل شده‌است. این واژه به معنای یک میلیارد بایت یا ۱۰۹ بایت می‌باشد، اما در محاسبات که بایت بر حسب توانی از دو محاسبه می‌شود، یک میلیارد بایت معادل ۲۳۰ و یا ۱،۰۷۳،۷۴۱،۸۲۴ بایت می‌باشد. هر گیگابایت برابر ۱۰۲۴ مگابایت است، به عبارتی هر گیگابایت برابر ۲۱۰ مگابایت است.

کاربرد هر یک از این دو تعریف بستگی به کاربرد آن دارد. بدین صورت که برای بیان گنجایش حافظه دیسک سخت و حجم داده‌های انتقال در مخابرات و شبکه‌های رایانه‌ای از توان ۱۰ ولی برای بیان ظرفیت حافظه تصادفی رایانه (به انگلیسی: RAM) از توان دودویی آن استفاده می‌شود. از دیدگاه تاریخی، اولین بار انجمن مهندسان برق و الکترونیک (به انگلیسی: IEEE) این مقیاس را برای توان کلیدخانه‌ها (به انگلیسی: Switchgear) تعریف کردند. اما در سال ۲۰۰۸ میلادی توصیه کمیته الکتروتکنیکی بین‌المللی (به انگلیسی: ICE) را برای استفاده از آن به عنوان در سیستم یکای متریک پذیرفتند.






نمونه‌های کاربرد

یک ساعت ویدیوی SDTV با نرخ ۲/۲ مگابیت بر ثانیه
هفت دقیقه ویدیوی HDTV با نرخ ‎۱۹/۳۹ مگابیت بر ثانیه
۱۱۴ دقیقه موسیقی با کیفیت لوح فشرده صوتی با نرخ ‎۱/۴ مگابیت بر ثانیه
یک DVD-R می‌تواند تا ‎ ۴/۷ گیگابایت داده در خود نگاه دارد
یک دیسک بلو ری دولایه تا ۵۰ گیگابایت داده ضبط می‌کند







ترابایت

ترابایت (به انگلیسی: Terabyte) یا TB، یکای اطلاعات و ذخیره‌سازی در رایانه است. این واژه از پیشوند ترا و کلمهٔ بایت تشکیل شده‌است. هر ترابایت برابر ۱۰۲۴ گیگابایت است. به عبارتی هر ترابایت برابر ۲۱۰ گیگابایت است .

بخش فناوری ذخیرهٔ اطلاعات شرکت هیتاچی در سال ۲۰۰۷ اولین دیسک سخت درونی ۱ ترابایتی جهان را معرفی کرد. این دیسک سخت که به نام DESK STAR 7K1000 معرفی شده‌بود، در نمایشگاه محصولات الکترونیکی لاس وگاس در معرض دید عموم قرار گرفته‌بود.






پتابایت

یک پتابایت (به انگلیسی: Petabyte) یک واحد از اطلاعات است که برابر یک کادریلیون بایت، یا ۱۰۲۴ ترابایت است. کوتاه شده آن (PB) می‌باشد.






استفاده از پتابایت

آرشیو اینترنت شامل حدود ۲۰۰۰ پتابایت اطلاعات است.






اگزابایت
اگزابایت (به انگلیسی: Exabyte) یک واحد از اطلاعات که برابر ۱۰۲۴ پتابایت است. کوتاه شده آن (EB) می‌باشد. این واژه تشکیل شده از پیشوند اگزا و کلمه بایت. پیشوند اگزا به معنای ۱۰ به توان ۱۸ بایت می‌باشد، اما در محاسبات که بایت بر حسب توانی از دو محاسبه می‌شود، یک اگزابایت معادل ۲ به توان ۶۰ بایت است.






زتابایت
زتابایت (به انگلیسی: Zettabyte) یک واحد از اطلاعات که برابر ۱۰۲۴ اکزابایت است. کوتاه شده آن (ZB) می‌باشد.






یوتابایت
یوتابایت (به انگلیسی: Yottabyte) کوتاه شده آن (YB)می‌باشد. هر یوتابایت برابر با ۱۰۲۴ زتابایت می‌باشد.






سوتابایت
سوتابایت (به انگلیسی: Sottabyte) کوتاه شده آن (SB)می‌باشد. هر سوتابایت برابر با ۱۰۲۴ یوتابایت می‌باشد.






کیبی‌بایت

کیبی‌بایت یک ضریبی از واحد بایت است که برای مقادیر دیجیتالی اطلاعات استفاده می‌شود. پیشوندهای دودویی کیبی به معنی ۲۱۰ می‌باشد در نتیجه یک کیبی‌بایت، ۱۰۲۴ بایت خواهد بود. علامت کیبی‌بایت، KiB است.

این واحد در سال ۱۹۹۸ توسط کمیسیون الکتروتکنیکی بین‌المللی (آی‌ئی‌سی) ثبت شد و از طرف تمامی سازمان‌های اصلی مورد قبول واقع گردید. کیبی‌بایت طراحی شده بود تا جایگزین کیلوبایت، که در علوم رایانه به معنی ۱۰۲۴ بایت است، شود چرا که با معنی کیلو در دستگاه بین‌المللی یکاها مغایرت دارد.






معنی

۱ کیبی‌بایت = ۲۱۰ بایت = ۱۰۲۴ بایت

پیشوند کیبی یک تک‌واژ چندوجهی می‌باشد که از واژگان کیلو (هزار) و باینری (دودویی) مشتق شده است. با وجود اینکه در پیشوندهای اس‌آی، برای کیلو از حرف کوچک کا استفاده می‌کنند (k)، در کمیسیون الکتروتکنیکی بین‌المللی از حرف بزرگ استفاده می‌کند(K).







مبی‌بایت

مبی‌بایت یک ضریبی از واحد بایت است که برای مقادیر دیجیتالی اطلاعات استفاده می‌شود. پیشوندهای دودویی مبی به معنی ۲۲۰ می‌باشد در نتیجه یک مبی‌بایت، ۱٬۰۴۸٬۵۷۶ بایت خواهد بود. علامت مبی‌بایت، MiB است.

این واحد در سال ۱۹۹۸ توسط کمیسیون الکتروتکنیکی بین‌المللی (آی‌ئی‌سی) ثبت شد و از طرف تمامی سازمان‌های اصلی مورد قبول واقع گردید. مبی‌بایت طراحی شده بود تا جایگزین مگابایت، که در علوم رایانه به معنی ۱۰۶ بایت است، شود چرا که با معنی مگا در دستگاه بین‌المللی یکاها مغایرت دارد.






گیبی‌بایت

گیبی‌بایت یک ضریبی از واحد بایت است که برای مقادیر دیجیتالی اطلاعات استفاده می‌شود. پیشوندهای دودویی گیبی به معنی ۲۳۰ می‌باشد در نتیجه یک گیبی‌بایت، ۱٬۰۷۳٬۷۴۱٬۸۲۴ بایت خواهد بود. علامت گیبی‌بایت، GiB است.

این واحد توسط کمیسیون الکتروتکنیکی بین‌المللی (آی‌ئی‌سی) ثبت شد و از طرف تمامی سازمان‌های اصلی مورد قبول واقع گردید. گیبی‌بایت طراحی شده بود تا جایگزین گیگابایت، که در علوم رایانه به معنی ۱۰۹ بایت است، شود چرا که با معنی گیگا در دستگاه بین‌المللی یکاها مغایرت دارد.






تبی‌بایت

تبی‌بایت یک ضریبی از واحد بایت است که برای مقادیر دیجیتالی اطلاعات استفاده می‌شود. پیشوندهای دودویی تبی به معنی ۲۴۰ می‌باشد در نتیجه یک تبی‌بایت، ۱٬۰۹۹٬۵۱۱٬۶۲۷٬۷۷۶ بایت خواهد بود. علامت تبی‌بایت، TiB است.

این واحد توسط کمیسیون الکتروتکنیکی بین‌المللی (آی‌ئی‌سی) ثبت شد و از طرف تمامی سازمان‌های اصلی مورد قبول واقع گردید. تبی‌بایت طراحی شده بود تا جایگزین ترابایت، که در علوم رایانه به معنی ۱۰۱۲ بایت است، شود چرا که با معنی ترا در دستگاه بین‌المللی یکاها مغایرت دارد.







پبی‌بایت

پبی‌بایت یک ضریبی از واحد بایت است که برای مقادیر دیجیتالی اطلاعات استفاده می‌شود. پیشوندهای دودویی پبی به معنی ۲۵۰ می‌باشد در نتیجه یک پبی‌بایت، ۱٬۱۲۵٬۸۹۹٬۹۰۶٬۸۴۲٬۶۲۴ بایت خواهد بود. علامت پبی‌بایت، PiB است.

این واحد توسط کمیسیون الکتروتکنیکی بین‌المللی (آی‌ئی‌سی) ثبت شد و از طرف تمامی سازمان‌های اصلی مورد قبول واقع گردید. پبی‌بایت طراحی شده بود تا جایگزین پتابایت، که در علوم رایانه به معنی ۱۰۱۵ بایت است، شود چرا که با معنی پتا در دستگاه بین‌المللی یکاها مغایرت دارد.






معنی
پیشوند پبی یک تک‌واژ چندوجهی می‌باشد که از واژگان پتا (کادریلیون) و باینری (دودویی) مشتق شده است.







اگزبی‌بایت

اگزبی‌بایت یک ضریبی از واحد بایت است که برای مقادیر دیجیتالی اطلاعات استفاده می‌شود. پیشوندهای دودویی اگزبی به معنی ۲۶۰ می‌باشد در نتیجه یک اگزبی‌بایت، ۱٬۱۵۲٬۹۲۱٬۵۰۴٬۶۰۶٬۸۴۶٬۹۷۶ بایت خواهد بود. علامت اگزبی‌بایت، EiB است.

این واحد توسط کمیسیون الکتروتکنیکی بین‌المللی (آی‌ئی‌سی) ثبت شد و از طرف تمامی سازمان‌های اصلی مورد قبول واقع گردید. اگزبی‌بایت طراحی شده بود تا جایگزین اگزابایت، که در علوم رایانه به معنی ۱۰۱۸ بایت است، شود چرا که با معنی اگزا در دستگاه بین‌المللی یکاها مغایرت دارد.







زبی‌بایت

زبی‌بایت یک ضریبی از واحد بایت است که برای مقادیر دیجیتالی اطلاعات استفاده می‌شود. پیشوندهای دودویی زبی به معنی ۲۷۰ می‌باشد در نتیجه یک زبی‌بایت، ۱٬۱۸۰٬۵۹۱٬۶۲۰٬۷۱۷٬۴۱۱٬۳۰۳٬۴۲۴ بایت خواهد بود. علامت زبی‌بایت، ZiB است.

این واحد در سال ۲۰۰۵ توسط کمیسیون الکتروتکنیکی بین‌المللی (آی‌ئی‌سی) ثبت شد و از طرف تمامی سازمان‌های اصلی مورد قبول واقع گردید. زبی‌بایت طراحی شده بود تا جایگزین زتابایت، که در علوم رایانه به معنی ۱۰۲۱ بایت است، شود چرا که با معنی زتا در دستگاه بین‌المللی یکاها مغایرت دارد.






یوبی‌بایت

یوبی‌بایت یک ضریبی از واحد بایت است که برای مقادیر دیجیتالی اطلاعات استفاده می‌شود. پیشوندهای دودویی یوبی به معنی ۲۸۰ می‌باشد در نتیجه یک یوبی‌بایت، ۱٬۲۰۸٬۹۲۵٬۸۱۹٬۶۱۴٬۶۲۹٬۱۷۴٬۷۰۶٬۱۷۶ بایت خواهد بود. علامت یوبی‌بایت، YiB است.

این واحد در سال ۲۰۰۵ توسط کمیسیون الکتروتکنیکی بین‌المللی (آی‌ئی‌سی) ثبت شد و از طرف تمامی سازمان‌های اصلی مورد قبول واقع گردید. یوبی‌بایت طراحی شده بود تا جایگزین یوتابایت، که در علوم رایانه به معنی ۱۰۲۴ بایت است، شود چرا که با معنی یوتا در دستگاه بین‌المللی یکاها مغایرت دارد.
page1 - page2 - page3 - page4 - page5 - page7 - page8 - | 2:08 am
روش‌های جهت‌یابی در روز

جهت‌یابی به کمک موقعیت خورشید در آسمان

۱- خورشید صبح تقریباً از سمت شرق طلوع می‌کند، و شب تقریباً در سمت غرب غروب می‌کند.

این مطلب فقط در اول بهار و پاییز صحیح است؛ یعنی در اولین روز بهار و پاییز خورشید دقیقاً از شرق طلوع و در غرب غروب می‌کند، ولی در زمان‌های دیگر، محل طلوع و غروب خورشید نسبت به مشرق و مغرب مقداری انحراف دارد.






در تابستان طلوع و غروب خورشید شمالی‌تر از شرق و غرب است، و در زمستان جنوبی‌تر از شرق و غرب می‌باشد. در اول تابستان و زمستان، محل طلوع و غروب خورشید حداقل حدود ۲۳٫۵ درجه با محل دقیق شرق و غرب فاصله دارد، که این خطا به هیچ وجه قابل چشم پوشی نیست. در واقع از آن‌جا که موقعیت دقیق خورشید با توجه به فصل و عرض جغرافیایی متغیر است، این روش نسبتاً غیردقیق است.

۲- در نیمکرهٔ شمالی زمین، در زمان ظهر شرعی خورشید همیشه دقیقاً در جهت جنوب است و سایهٔ اجسام رو به شمال می‌افتد.

ظهر شرعی یا ظهر نجومی، دقیقاً هنگامی است که خورشید به بالاترین نقطه خود در آسمان می‌رسد. در این زمان، سایهٔ شاخص به حداقل خود در روز می‌رسد، و پس از آن دوباره افزایش می‌یابد؛ همان زمان اذان ظهر.

برای دانستن زمان ظهر شرعی می‌توان به روزنامه‌ها مراجعه کرد یا منتظر صدای اذان ظهر شد. ظهر شرعی حدوداً نیمه بین طلوع آفتاب و غروب آفتاب است.

۳- حرکت خورشید از شرق به غرب است؛ و این هم می‌تواند روشی برای یافتن جهت‌های جغرافیایی باشد.




جهت‌یابی با سایهٔ چوب(شاخص)

شاخص، چوب یا میله‌ای صاف و راست است (مثلاً شاخه نسبتاً صافی از یک درخت به طول مثلاً یک متر) که به طور عمودی در زمینی مسطح و هموار و افقی(تراز و میزان) فرو شده‌است.

روش اول: نوک(انتهای) سایهٔ شاخص روی زمین را [مثلاً با یک سنگ] علامت‌گذاری می‌کنیم. مدتی (مثلاً ده-بیست دقیقه بعد، یا بیشتر) صبر می‌کنیم تا نوک سایه چند سانتیمتر جابه‌جا شود. حال محل جدید سایهٔ شاخص (که تغییر مکان داده‌است) را علامت‌گذاری می‌نماییم. حال اگر این دو نقطه را با خطی به هم وصل کنیم، جهت شرق-غرب را مشخص می‌کند. نقطهٔ علامت‌گذاری اول سمت غرب، و نقطهٔ دوم سمت شرق را نشان می‌دهد. یعنی اگر طوری بایستیم که پای چپ‌مان را روی نقطهٔ اول و پای راستمان را روی نقطهٔ دوم بگذاریم، روبروی‌مان شمال را نشان می‌دهد، و رو به خورشید (پشت سرمان) جنوب است.

از آن‌جا که جهت ظاهری حرکت خورشید در آسمان از شرق به غرب است، جهت حرکت سایهٔ خورشید بر روی زمین از غرب به شرق خواهد بود. یعنی در نیم‌کره شمالی سایه‌ها ساعتگرد می‌چرخند.
هر چه از استوا دورتر بشویم، از دقت پاسخ در این روش کاسته می‌شود. یعنی در مناطق قطبی (عرض جغرافیایی بالاتر از ۶۰ درجه) استفاده از آن توصیه نمی‌شود.
در شب‌های مهتابی هم از این روش می‌توان استفاده کرد: به جای خورشید از ماه استفاده کنید.

روش دوم(دقیق‌تر): محل سایهٔ شاخص را زمانی پیش از ظهر علامت گذاری می‌کنیم. دایره یا کمانی به مرکز محل شاخص و به شعاع محل علامت‌گذاری شده می‌کشیم. سایه به تدریج که به سمت شرق می‌رود کوتاه‌تر می‌شود، در ظهر به کوتاه‌ترین اندازه‌اش می‌رسد، و بعداز ظهر به تدریج بلندتر می‌گردد. هر گاه بعد از ظهر سایهٔ شاخص از روی کمان گذشت (یعنی سایهٔ شاخص هم‌اندازهٔ پیش از ظهرش شد) آن‌جا را به عنوان نقطهٔ دوم علامت‌گذاری می‌کنیم. مانند روش پیشین، این نقطه سمت شرق و نقطهٔ پیشین سمت غرب را نشان می‌دهد.

در واقع هر دو نقطه سایهٔ هم‌فاصله از شاخص، امتداد شرق-غرب را مشخص می‌کنند.
با این‌که روش پیشین نسبتاً دقیق است، این روش دقیق‌تر است؛ البته وقت بیشتری برای آن لازم است.
برای کشیدن کمان مثلاً طنابی(مانند بند کفش، نخ دندان) را انتخاب کنید. یک طرف طناب را به شاخص ببندید، و طرف دیگرش را به یک جسم تیز؛ به شکلی که وقتی طناب را می‌کشید دقیقاً به محل علامت‌گذاری شده برسد. نیم‌دایره‌ای روی زمین با جسم تیز رسم کنید.
وقتی سایهٔ شاخص به حداقل اندازهٔ خود می‌رسد(در ظهر شرعی)، این سایه سمت جنوب را نشان می‌دهد (بالای ۲۳٫۵ درجه).



جهت‌یابی با ساعت عقربه‌دار
ساعت مچی معمولی (آنالوگ، عقربه‌ای) را به حالت افقی طوری در کف دست نگه می‌داریم که عقربهٔ ساعت‌شمار به سمت خورشید اشاره کند. در این حالت، نیمسازِ زاویه‌ای که عقربهٔ ساعت‌شمار با عدد ۱۲ ساعت می‌سازد (زاویهٔ کوچک‌تر، نه بزرگ‌تر)، جهت جنوب را نشان می‌دهد. یعنی مثلاً اگر چوب‌کبریتی را [به طور افقی] در نیمهٔ راه میان عقربهٔ ساعت‌شمار و عدد ۱۲ ساعت قرار دهید، به طور شمالی-جنوبی قرار گرفته‌است.
نکات

این که گفته شد عقربهٔ کوچک ساعت به سمت خورشید اشاره کند، یعنی این‌که اگر شاخصی [مثلاً چوب‌کبریت] ای که در مرکز ساعت قرار دهیم، سایه‌اش موازی با عقربهٔ ساعت‌شمار و در جهت مقابل آن باشد. یا این‌که سایهٔ عقربهٔ ساعت‌شمار درست در زیر خود عقربه قرار گیرد. یا مثلاً اگر چوبی ده-پانزده سانتیمتری را در زمین به‌طور عمودی قرار دهیم، ساعت روی زمین به شکلی قرار گرفته باشد که عقربهٔ ساعت‌شمارش موازی با سایهٔ چوب باشد.
دلیل این‌که زاویه بین عقربهٔ ساعت‌شمار و ۱۲ را نصف می‌کنیم این است که: وقتی خوشید یک بار دور زمین می‌چرخد، ساعت ما دو دور می‌چرخد(دو تا ۱۲ ساعت). یعنی گرچه روز ۲۴ ساعت است (و یک دور کامل را در ۲۴ ساعت طی می‌کند)، ساعت‌های ما یک دور کامل را در ۱۲ ساعت طی می‌نماید. اگر ساعت ۲۴ ساعته‌ای می‌داشتید، که دور آن به ۲۴ قسمت مساوی تقسیم شده بود، هر گاه عقربهٔ ساعت‌شمار را رو به خورشید می‌گرفتید عدد ۱۲ ساعت همیشه جهت جنوب را نشان می‌داد.
این روش وقتی سمت صحیح را نشان می‌دهد، که ساعت مورد نظر درست تنظیم شده باشد. یعنی اگر در بهار و تابستان ساعت‌ها را نسبت به ساعت استاندارد یک‌ساعت جلو می‌برند، ما باید آن را تصحیح کنیم(ابتدا ساعت‌مان را یک ساعت عقب ببریم سپس روش را اِعمال کنیم؛ یا نیمساز عقربهٔ ساعت‌شمار را [به جای ۱۲] با ۱ حساب کنید). همچنین در همهٔ سطح یک کشور معمولاً ساعت یکسانی وجود دارد، که مثلاً در ایران حدود یک ساعت متغیر است (ایران تقریباً بین دو نصف‌النهار قرار دارد؛ لذا ظهر شرعی در شرق و غرب ایران حدوداً یک ساعت فاصله دارد.) ساعت صحیح هر مکان همان ساعتی است که هنگام ظهر شرعی در آن در طول سال، اطراف ساعت ۱۲ ظهر است. در واقع برای تعیین دقیق جهت‌های جغرافیایی ساعت باید طوری تنظیم باشد که هنگام ظهر شرعی ساعت ۱۲ را نشان دهد.
روش ساعت مچی تا ۲۴ درجه امکان خطا دارد. برای دقت بیشتر باید از آن در عرض جغرافیایی بین ۴۰ و ۶۰ درجه [شمالی یا جنوبی] استفاده شود؛ هر چند در عرض جغرافیایی ۲۳٫۵ تا ۶۶٫۵ درجه [شمالی یا جنوبی] نتیجه‌اش قابل قبول است.(البته در نیم‌کردهٔ جنوبی جهت شمال و جنوب برعکس است.) در واقع هر چه به استوا نزدیک‌تر شویم، از دقت این روش کاسته می‌شود. ضمناً هر چه زمان به کار بردن این روش به ظهر شرعی نزدیک‌تر باشد، نتیجهٔ آن دقیق‌تر خواهد بود.
اگر مطمئن نیستید کدام طرف شمال است و کدام طرف جنوب، به یاد بیاورید که خورشید از شرق بر می‌خیزد، در غرب می‌نشیند، و در ظهر سمت جنوب است.
توجه کنید که اگر این روش را در هنگام ظهر شرعی (یعنی ساعت ۱۲) اجرا کنیم، جهت عقربه ساعت‌شمار خود به سوی جنوب است. یعنی مانند همان روش «جهت‌یابی با سمت خورشید»، که گفتیم خورشید در ظهر شرعی به سمت جنوب است.
اگر از ساعت دیجیتال استفاده می‌کنید، می‌توانید ساعت عقربه‌داری را روی یک کاغذ یا روی زمین بکشید (دور دایره‌ای از ۱ تا ۱۲ بنویسید، و عقربهٔ ساعت‌شمار را هم بکشید)، و سپس از روش بالا استفاده کنید.
حتی وقتی هوا آفتابی نیست و خورشید به راحتی دیده نمی‌شود هم گاه سایهٔ خوشید را می‌توان دید. اگر یک چوب‌کبریت را عمود نگه دارید، سایهٔ آن برعکس جهت خورشید می‌افتد.




روش‌های جهت‌یابی در شب
جهت‌یابی با ستارهٔ قطبی

از آن‌جا که ستاره‌ها به محور ستاره قطبی در آسمان می‌چرخند، در نیم‌کرهٔ شمالی زمین ستارهٔ قطبی با تقریب بسیار خوبی (حدود ۰٫۷ درجه خطا) جهت شمال جغرافیایی (و نه شمال مغناطیسی) را نشان می‌دهد؛ یعنی اگر رو به آن بایستیم، رو به شمال خواهیم بود.

برای یافتن ستارهٔ قطبی روش‌های مختلفی وجود دارد:

به وسیلهٔ مجموعه ستارگان «دبّ اکبر»: صورت فلکی دبّ اکبر شامل هفت ستاره‌است که به شکل ملاقه قرار گرفته‌اند: چهار ستاره آن تشکیل یک ذوزنقه را می‌دهند، و سه ستارهٔ دیگر مانند یک دنباله در ادامه ذوزنقه قرار گرفته‌اند. هر گاه دو ستاره‌ای که لبهٔ بیرونی ملاقه را تشکیل می‌دهند (دو ستارهٔ قاعده کوچک ذوزنقه؛ لبهٔ پیالهٔ ملاقه؛ محلی که آب از آن‌جا می‌ریزد) را [با خطی فرضی] به هم وصل کنیم، و پنج برابر فاصله میان دو ستاره، به سمت جلو ادامه دهیم، به ستاره قطبی می‌رسیم.
به وسیلهٔ مجموعه ستاره‌های «ذات‌الکرسی»: صورت فلکی ذات‌الکرسی شامل پنج ستاره‌است که به شکل W یا M قرار گرفته‌اند. هرگاه (مطابق شکل) ستارهٔ وسط W (رأس زاویهٔ وسطی) را حدود پنج برابرِِ «فاصلهٔ آن نسبت به ستاره‌های اطراف» به سوی جلو ادامه دهیم، به ستارهٔ قطبی می‌رسیم.


نکات
صورت‌های فلکی ذات‌الکرسی و دبّ اکبر نسبت به ستارهٔ قطبی تقریباً روبه‌روی یکدیگر، و دور ستاره قطبی خلاف جهت عقربه‌های ساعت می‌چرخند. اگر یکی از آن‌ها پشت کوه پنهان بود، با دیگری می‌توان ستارهٔ قطبی را یافت. فاصلهٔ هر کدام از این دو صورت فلکی تا ستارهٔ قطبی تقریباً برابر است.
اگر برای یافتن ستاره‌ها در آسمان از نقشه ستاره‌یاب (افلاک‌نما) استفاده می‌کنید، به‌خاطر داشته باشید که ستاره‌یاب‌ها موقعیت ستاره‌ها را در زمان، تاریخ و موقعیت جغرافیایی (طول و عرض جغرافیایی) خاصی نشان می‌دهند.
هر چه از استوا به سوی قطب شمال برویم، ستارهٔ قطبی در آسمان بالاتر (در ارتفاع بیشتر) دیده می‌شود. یعنی ستارهٔ قطبی در استوا (عرض جغرافیایی صفر درجه) تقریباً در افق دیده می‌شود، و در قطب شمال(عرض جغرافیایی ۹۰ درجه) تقریباً بالای سر (سرسو، سمت‌الرّأس، رأس‌القدم) دیده می‌شود. بالاتر از عرض جغرافیایی ۷۰ درجه شمالی عملاً نمی‌توان با ستارهٔ قطبی شمال را پیدا کرد.





جهت‌یابی با هلال ماه

اگر به دلیل وجود ابر یا درختان نمی‌توانید ستاره‌ها را ببینید، می‌توانید از ماه برای جهت‌یابی استفاده کنید.

ماه به شکل هلال باریکی تولد می‌یابد، و در نیمه‌های ماه قمری به قرص کامل تبدیل می‌شود، و سپس در جهت مقابل هلالی می‌شود. در نیمهٔ اول ماه‌های قمری قسمت خارجی ماه (تحدب و کوژی ماه، برآمدگی و برجستگی ماه) مانند پیکانی جهت غرب را نشان می‌دهد. در نیمهٔ دوم ماه‌های قمری، تحدب ماه به سمت مشرق است.

اگر خطی از بالای هلال به پایین آن وصل کنیم و ادامه دهیم، در نیمهٔ اول ماه قمری شکل p و در نیمهٔ دوم شکل q خواهد داشت.
کره ماه در نیمهٔ اول ماه‌های قمری پیش از غروب آفتاب طلوع می‌کند، و در نیمهٔ دوم پس از غروب، تا پایان ماه که پس از نیمه‌شب طلوع می‌نماید.
پیدا کردن جنوب توسط ماه: اگر خطی فرضی میان دو نوک تیز هلال ماه رسم کرده و آن را تا زمین ادامه دهید، تقاطع امتداد این خط با افق، نقطه جنوب را [در نیم‌کرهٔ شمالی زمین] نشان می‌دهد.
این روش جهت‌یابی چندان دقیق نیست، ولی حداقل راه‌نمایی تقریبی را فراهم می‌سازد. در زمان قرص کامل نمی‌توان از این روش استفاده کرد. وقتی ماه به صورت قرص کامل است، می‌توان به کمک حرکت ظاهری ماه (که از مشرق به طرف مغرب است) جهت‌یابی کرد.


روش‌های دیگر جهت‌یابی در شب

حرکت ظاهری ماه در آسمان از شرق به غرب است.
خوشه پروین: دسته‌ای (حدود ده تا پانزده) ستاره، به شکل خوشه انگور، در یک جا مجتمع هستند که به آن مجموعه خوشه پروین می‌گویند. این ستارگان مانند خورشید از شرق به طرف غرب در حرکتند، ولی در همه حال دُمِ آن‌ها به طرف مشرق است.
ستارگان بادبادکی: حدود هفت -هشت ستاره در آسمان وجود دارد که به شکل بادبادک یا علامت سوال می‌باشند. این ستارگان نیز از شرق به غرب حرکت می‌کنند، و در همه حال دنباله بادبادکی آنها به‌طرف جنوب است.
کهکشان راه شیری تودهٔ عظیمی از انبوه ستارگان است که تقریباً از شمال شرقی به جنوب غربی امتداد یافته‌است. در شمال شرقی این راه باریک است، و هر چه به سمت جنوب غربی می‌رود، پهن‌تر می‌شود. هر چه به آخر شب نزدیک‌تر می‌شویم، قسمت پهن راه شیری به طرف مغرب منحرف می‌شود.



روش‌های جهت‌یابی، قابل استفاده در روز و شب

جهت‌یابی با قبله

اگر جهت قبله و میزان انحراف آن از جنوب (یا دیگر جهت‌های اصلی) را بدانیم، می‌توانیم شمال را تشخیص دهیم. مثلاً اگر در تهران ۳۷ درجه از جنوب سمت به غرب متمایل شویم (یعنی حدوداً جنوب غربی)، به طرف قبله ایستاده‌ایم. پس هرگاه در تهران جهت قبله را بدانیم، اگر ۳۷ درجه از سمت قبله در جهت عکس عقربه‌های ساعت بچرخیم، به طرف جنوب ایستاده‌ایم، و اگر ۱۴۳ درجه (۳۷-۱۸۰) در جهت عقربه‌های ساعت بچرخیم، به طرف شمال ایستاده‌ایم.

قبله را از راه‌های مختلفی می‌توان یافت:

قبله‌نما: دقیق‌ترین روش تعیین قبله، به‌وسیلهٔ قبله‌نماست، که آن هم با یک قطب‌نما انجام می‌گیرد؛ و اگر ما قطب‌نما داشته باشیم، با آن قطب را مشخص می‌کنیم!
محراب مسجد: محراب مساجد به طرف قبله‌است. در نمازخانه‌ها هم معمولاً جهت قبله مشخص شده‌است.
قبرستان: مرده را در قبر روی دست راست، به سمت قبله می‌خوابانند. پس اگر شما طوری ایستاده باشید که نوشته‌های سنگ قبر را به درستی می‌خوانید، سمت چپ‌تان قبله‌است.
دستشویی: از آن‌جا که قضای حاجت رو به قبله نباید باشد، معمولاً توالت‌ها را عمود بر قبله می‌سازند.






جهت‌یابی با قطب‌نمای دست‌ساز

اگر قطب‌نمایی به همراه نداشتید، ولی اتفاقاً یک سوزن یا میخ کوچک در جیبتان یافتید، این روش کمک‌کار شما در ساخت یک قطب‌نما خواهد بود. البته احتمال استفاده از آن در شرایط واقعی کم است، ولی انجام آن کاری سرگرم‌کننده‌است.

با مالش دادن یک سوزن فقط در یک جهت به آهن‌ربا -یا حتی احتمالاً چاقوی خودتان-، یا مالیدن آن فقط در یک جهت به پارچهٔ ابریشمی یا پنبه‌ای، سوزنْ مغناطیسی یا قطبی می‌شود؛ مانند سوزن قطب‌نما. (مثلاً با ۳۰ بار مالش دادن سوزن به آهنربا از طرف خودتان به سمت بیرون، سوزن به اندازهٔ کافی خاصیت آهنربایی پیدا می‌کند. همچنین مالش سر سوزن از پایین به بالا بر پارچهٔ ابریشمی باعث می‌شود که سر سوزن نقطه شمال را نشان دهد). حتی می‌توانید آن‌را در یک جهت میان موهای سر خود بکشید. توجه کنید که همیشه فقط در یک جهت مالش دهید.

حال اگر آن‌را روی یک چوب‌پنبه یا پوشال کوچک قرار دهید(سوزن را به چوب‌پنبه چسب بزنید، یا درون آن فرو کنید؛ یا در دو طرف سوزن چوب‌پنبه‌هایی کوچک فرو کنید)، و روی آب (آب راکد یا ظرفی پر از آب) شناور نمایید، مانند یک قطب‌نما عمل می‌کند، و سر سوزن رو به شمال می‌چرخد. برای این‌که سمت شمال و جنوب سوزن را اشتباه نکنید، این نکته را در نظر بگیرید که -در نیمکرهٔ شمالی زمین- آن سمت قطب‌نما که تقریباً رو به خورشید و ماه است، سمت جنوب است، زیرا آن‌ها در قسمت جنوبی آسمان قرار دارند. همچنین می‌توانید سوزن را با یک آهنربا امتحان کنید، و سپس سمت شمال را با علامتی روی آن مشخص نمایید.

روش دیگر ساخت آهنربا این است که یک میله یا سوزن آهنی یا فولادی را در جهت میدان مغناطیسی زمین تراز کنیم، و سپس آن‌را حرارت داده یا بر آن ضربه وارد کنیم. حال اگر این آهنربا را روی سطحی با اصطکاک کم قرار دهیم (روی یک تکه چوب کوچک در آب شناور سازید، یا مثلاً سوزن را با یک ریسمان غیرفلزی آویزان(معلق) نمایید) قطب‌نمای ما کار می‌کند؛ یعنی میله آن‌قدر می‌چرخد تا در راستای میدان مغناطیسی زمین (شمالی-جنوبی) قرار گیرد.
مغناطیسی کردن سوزن با باتری: اگر سیمی را دور سوزن بپیچانید و برای چند دقیقه سر سیم را به ته باتری وصل کنید، سوزن مغناطیسی می‌شود.
به دلیل کشش سطحی آب، می‌توان سوزن را به تنهایی روی سطح آن شناور کرد. مثلاً می‌توان سوزن را روی کاغذی گذاشت، و کاغذ را روی آب گذاشت. اگر کاغذ روی آب بماند که بهتر، و اگر کاغذ در آب فرو برود احتمالاً سوزن روی آب باقی می‌ماند. اگر سوزن را با گریس یا روغنی غیرقابل‌حل در آب چرب کنید (مثلاً با مالش سوزن به موهای خود سوزن را چرب نمایید)، کار آسان‌تر خواهد شد. چرب بودن سوزن سبب می‌شود که سوزن روی سطح آب شناور بماند.
 
ساعت : 2:08 am | نویسنده : admin | مطلب قبلی | مطلب بعدی
شمال غرب | next page | next page